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Abstract. In this note, we prove a generalization of Efimov’s computation for the
universal localizing invariant of categories of sheaves with certain microsupport con-
straint. The proof base on certain categorical equivalences given by the Fourier-Sato
transformation, which is different from the original proof. As an application, we com-
pute the universal localizing invariant of the category of almost quasi-coherent sheaf
on the Novikov toric scheme introduced by Vaintrob.

1. Introduction

In [Efi24], Efimov introduces an algebraic K-theory for a class of large categories,
say dualizable stable categories, which extends the usual nonconnective algebraic K-
theory defined for compactly generated categories. In general, the construction enables
us to extend localizing invariants of small categories to dualizable stable categories. In
particular, for the universal (finitary) localizing invariant Uloc : CatEx → Motloc, there
exists a canonical extension Ucont

loc : Catdualst → Motloc, where Motloc is the category of
non-commutative motives.

However, as the construction involves computations about the so-called Calkin cat-
egory that is not easy to describe, computation of the continuous version of localizing
invariants is even harder, and few computational results are known. One distinguished
result among them is the following:

Theorem 1.1 ([Efi24, Theorem 6.11]). Let X be a locally compact Hausdorff space and
C be a presheaf on X with values in Catdualst . Then the category Sh(X; C) is dualizable
stable and we have the following natural isomorphism in Motloc:

Ucont
loc (Sh(X; C)) ≃ Γc(X, (Ucont

loc C)♯).

Another interesting example concerns categories of sheaves with microsupport con-
straints. For a manifold M and any F ∈ Sh(M), Kashiwara and Schapira introduced a
conic closed set SS(F ) ⊂ T ∗M in [KS90], which is called the microsupport of sheaves.
For a conic closed set Z ⊂ T ∗M , we denote ShZ(M ; C) the full subcategory of sheaves
whose microsupport is bounded by Z. Then ShZ(M ; C) is dualizable stable (when C is)
since it is a reflexive subcategory of Sh(M ; C).

Theorem 1.2 ([Efi24, Proposition 4.21]). Let C be a dualizable stable category. Then
for the category ShR×[0,∞)(R; C), which is known to be dualizable stable, we have the
following natural equivalence in Motloc:

Ucont
loc (ShR×[0,∞)(R; C)) ≃ 0.
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It was shared with us by Alexander I. Efimov, during the Masterclass: Continuous
K-theory in University of Copenhagen on June 2024, that Theorem 1.2 is still true for
a finite dimensional real vector space V with the microsupport constraint Z = V × γ
for a non-zero proper closed convex cone γ (i.e. Equation (1.1) below). We are grateful
for his generosity. One can prove the high dimensional version in the same way as the
1-dimensional version using a V -indexed semi-orthogonal decomposition.

New results. In this article, using the Fourier-Sato transformation, we directly iden-
tify certain categories of sheaves with microsupport constraint with certain categories
without microsupport constraint. Those facts are well-known to experts; however, the
interesting part is that we can use them to deduce a generalization of Theorem 1.2
directly from Theorem 1.1.

To achieve our target, we give a definition of microsupport for more general coefficient
categories. And in particular, we show that if C is presentable stable, then the definition
inherits the most of nice properties deduced in [KS90]. In particular, we may develop a
Motloc-valued microlocal sheaf theory without any difficulty. Those constructions may
be of independent interests.

Our main result is

Theorem 1.3 (Theorem 4.4 (2-b) below). Let C be a dualizable stable category. For
a finite dimensional real vector space V and a conic closed set X ⊂ V ∨, we have the
equivalence

Ucont
loc (ShV×X(V ; C)) ≃ Γc(X;Ucont

loc (C)).

In particular, if we pick X = γ, a non-zero proper convex closed cone. Then we deduce
from a direct cohomology computation that

(1.1) Ucont
loc (ShV×γ(V ; C)) ≃ Γc( γ ;Ucont

loc (C)) = 0,

which is the straightforward generalization of Theorem 1.2.

Remark 1.4. The proof of Theorem 1.2 therein is better in the sense that it could
be generalized to all accessible localizing invariants, in particular, this also works for
Equation (1.1). However, so far we only know Theorem 1.3 works for finitary localizing
invariants due to the state of Theorem 1.1.

Remark 1.5. Here, we explain logic dependence of results.
The original proof of Theorem 1.2 (and Equation (1.1)) uses the microlocal cut-off

lemma of Kashiwara and Schapira to identify the corresponding categories to sheaves over
the so-called γ∨-topology (which is non-Hausdorff!), and then it is concluded by a semi-
orthogonal decomposition of corresponding presheaf categories. No other machinery in
microlocal sheaf theory is involved.

Our proof uses more machinery from the microlocal sheaf theory, it is unsurprising
that the microlocal cut-off lemma appears implicitly in our approach. However, we will
not construct any semi-orthogonal decomposition, which makes our proof different from
the original one.

In fact, we also prove a version of the theorem for the Tamarkin category TV×X(T ∗V ) ⊂
Sh(V ;TC) that will be defined later.
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Theorem 1.6 (Theorem 4.4 (1) below). Let C be a dualizable stable category. For a
finite dimensional real vector space V and a closed set X ⊂ V ∨, we have the equivalence

Ucont
loc (TV×X(T ∗V )) ≃ ΩΓc(X;Ucont

loc (C)).

Remark 1.7. Here, I want to emphasize that the coefficient category TC here has wide
range of applications. The category TC was first introduced by Tamarkin [Tam18] for
applications in symplectic geometry. It was also be applied to resolve the irregular
Riemann-Hilbert correspondence (with the name enhanced sheaves) [DK15]. Very re-
cently, it was considered in [Sch25] in terms of the notation W with a slightly different
definition. As we explained in [KZ25, Proposition 4.12], we have W ≃ TSp, which is
also equivalent to the category of complete almost (R-filtered) modules over the Novikov
ring. As explained in [Sch25], the category TC would have certain interesting application
in analytic geometry since the Novikov ring could be think of as a “perfectoid ring over
Z”.

Next, we present an application. For a fan1 Σ in Rn, Vaintrob constructs a non-
Noetherian k-scheme (where k is a discrete ring), the so-called Novikov toric scheme,
XNov

Σ and a subscheme ∂Nov
Σ defined by an idempotent ideal sheaf in [Vai17]. Then we

can discuss the category of almost coherent sheaves on the almost content (XNov
Σ , ∂Nov

Σ ).
If Σ is rational, XNov

Σ is strongly related to the infinite root stack ∞√XΣ of the usual
toric variety. We refer to [KZ25] for more details.

We have the following result, which is first proven by Vaintrob and then by Kuwagaki
and the author [KZ25] using a different method.

Theorem 1.8. For a fan Σ and Modk the category of k-modules, we have

aQCohTNov(XNov
Σ , ∂Σ) ≃ ShRn×|Σ|(Rn;Modk).

Then as an application of Theorem 1.3, we have

Corollary 1.9. For a fan Σ, we have

Ucont
loc (aQCohTNov(XNov

Σ , ∂Σ)) ≃ Γc(|Σ|;Ucont
loc (Modk)).

Remark 1.10. Instead of Theorem 1.3, one can also deduce the Corollary from (1.1) and
[Efi24, Proposition 4.11] based on the fiber product decomposition of aQCohTNov(XNov

Σ , ∂Σ)
explained in [KZ25].

Category convention. In this article, we always mean ∞-categories when referring to
categories. We denote by Catdualst the category of dualizable stable categories consisting of
presentable stable categories that are dualizable with respect to the Lurie tensor product
and strongly continuous functors between them. In particular, compactly generated
stable categories are dualizable. We denote Sp the category of spectra. We denote the
countable cardinality by ω.

Acknowledgements. The author thanks to Alexander I. Efimov for explaining his
work on continuous K-theory and to Peter Scholze for explaining potential applications
in analytic geometry. This work was supported by the Novo Nordisk Foundation grant
NNF20OC0066298 and the VILLUM FONDEN Investigator grant 37814.

1We do not ask the fan to be rational with respect to a fixed lattice in Rn.
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2. Sheaves and microsupport

For a bi-complete category C and a topological space X, we denote the category of
C-valued sheaves by Sh(X; C) [Lur09, 7.3.3.1]. It is explained in [Vol21] that in this case
we have an equivalence Sh(X; Sp)⊗ C ≃ Sh(X; C).

It is further explained in loc. cit. that in the C-valued sheaf setting, we can define
the functors fC

∗ , f
C
! , and f∗

C , f
!
C . When C is, in addition, symmetric monoidal, we can

define the monoidal product ⊗C and the internal hom HomC as the right adjoint of ⊗C ,
yielding the full six-functor formalism. We also refer to [Sch22] for further details on the
six-functor formalism.

Regarding the microlocal theory of sheaves in the ∞-categorical setting, we remark
that, based on [RS18], all arguments in [KS90] extend to the case where C is compactly
generated. Therefore, the microlocal sheaf theory with compactly generated coefficients,
for example C = Sp, can be developed without difficulty.

However, as suggested in [Efi24, Remark 4.24], it is possible to develop a microlocal
sheaf theory with more general coefficients.

Here, we present the Ω-lens definition. Let M be a smooth manifold, and set Ṫ ∗M =
T ∗M \ 0M .

Definition 2.1. [GV24, Definition 3.1] Let Ω ⊂ Ṫ ∗M be an open conic subset. We call
a locally closed subset C of M an Ω-lens if the following conditions are satisfied: C is
compact, and there exists an open neighborhood U of C and a function g : U× [0, 1] → R
such that

(1) dgt(x) ∈ Ω for all (x, t) ∈ U × [0, 1], where gt = g|U×{t};
(2) {gt < 0} ⊂ {gt′ < 0} if t ≤ t′;
(3) the hypersurfaces {gt = 0} coincide on U \ C;
(4) C = {g1 < 0} \ {g0 < 0}.

Definition 2.2. Let C be a category that admits small limits, and let F ∈ Sh(M ; C).
We define Ṫ ∗M \ ṠSC(F ) as the maximal open subset Ω ⊂ Ṫ ∗M such that, for any Ω-lens
C defined by a smooth function g as in Definition 2.1, the restriction morphism

Γ({g1 < 0}, F ) → Γ({g0 < 0}, F )

is an equivalence.
We then define the microsupport of F by SSC(F ) = ṠSC(F ) ∪ supp(F ). When the

category C is clear from context, we simply write SS(F ).

When C = Sp, there exists a pointwise definition of microsupport SSKS(F ) ⊂ T ∗M , as
explained in [KS90, RS18]. The argument therein shows that SSKS(F )∩0M = supp(F ),
and hence SSKS(F )∩0M = SSSp(F )∩0M . For the non-zero part, we have the following:

Lemma 2.3. [GV24, Lemma 3.2] Let F ∈ Sh(M ; Sp) and let Ω ⊂ T ∗M \0M be an open

conic subset. Then ṠSKS(F ) ∩ Ω = ∅ if and only if Hom(1C , F ) ≃ 0 for any Ω-lens C.

Corollary 2.4. For F ∈ Sh(M ; Sp), we have SSKS(F ) = SSSp(F ).

On the other hand, based on [GV24, Lemma 3.3], we incorporate the covariant Verdier
duality with microsupport:



A REMARK ON CONTINUOUS K-THEORY AND FOURIER-SATO TRANSFORMATION 5

Proposition 2.5. [KZ25, Theorem B.8]2For a stable category C that admits both small

limits and colimits, we have ṠSC(F ) ∩ Ω = ∅ if and only if Γc({g0 < 0}, F ) → Γc({g1 <
0}, F ) is an equivalence for any −Ω-lens defined by g.

For a conic closed subset Z ⊂ T ∗M , we set ShZ(M ; C) as the full subcategory of
Sh(M ; C) spanned by F with SSC(F ) ⊂ Z. The Definition 2.2 shows that ShZ(M ; C) is
closed under limits, and Proposition 2.5 shows that ShZ(M ; C) is closed under colimits.
Therefore, we know that the inclusion iCZ : ShZ(M ; C) → Sh(M ; C) admits both left and
right adjoints.

In particular, for any presentable stable category C, under the natural identification

Sh(M ; Sp)⊗C ≃ Sh(M ; C), we have iSpZ ⊗C : ShZ(M ; Sp)⊗C → Sh(M ; C) is fully-faithful.
Moreover, we have

Proposition 2.6 ([Efi24, Remark 4.24]). For a presentable stable category C and a conic
closed subset Z ⊂ T ∗M , the essential image of the functor ShZ(M ; Sp)⊗ C → Sh(M ; C)
is identified with ShZ(M ; C). Equivalently, we have iCZ ≃ iSpZ ⊗ C and

ShZ(M ; C) ≃ ShZ(M ; Sp)⊗ C.

Proof. By Proposition 2.5, we have that (iSpZ )l can be characterized as a presentable
Bousfield localization that is local with respect to morphisms S{g0<0} → {g1 < 0} such

that gt defines a −Ṫ ∗M \ Z-lense. Let us denote by W−Z the set of morphisms(since
ω-lenses form a set).

We identify Sh(M ; C) = FunL(Sh(M ; Sp), C) and ShZ(M ; Sp)⊗C = FunL(Sh−Z(M ; Sp), C)
(i.e. corresponding cosheaf categories) by dualizability, we have that ShZ(M ; Sp) ⊗ C
consists exactly colimit preserving functors Sh(M ; Sp) → C that are local with respect to
W−Z . However, those W−Z-local colimit preserving functors form exactly ShZ(M ; C) in
Sh(M ; C) = FunL(Sh(M ; Sp), C) by the definition of ShZ(M ; C). The result then follows
from the above discussion and [Lur09, Proposition 5.5.4.2]. □

Consequently, all microsupport estimation results in [KS90] are correct for C-valued
sheaves since they are correct for Sp-valued sheaves.

Remark 2.7. When discussing monoidal structures on C and related C-linear dualizability,
we need more constraints. For example, one can assume C is (dualizable stable) locally
rigid. See, for example, [Ram24]. In this note, we only discuss the monoidal structure
on Sp, which is known to be rigid.

Now, we consider the following category introduced by Tamarkin. For a dualizable
stable category C, we set

TC := Sh(R; C)/ShR×[0,∞)(R; C).

Using the bi-fiber sequence TSp → Sh(R; Sp) → ShR×[0,∞)(R; Sp), we have that TC ≃
TSp ⊗ C, and for a smooth manifold M we have

(2.1) Sh(M ; Sp)⊗ TC ≃ Sh(M ;TC) ≃ Sh(M × R; C)/ShT ∗M×R×[0,∞)(M × R; C).

2In the arXiv version of the article, we require a symmetric monoidal structure for C, which is
unnecessary.
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To avoid certain confusion, we denote the three equivalent categories by

T(T ∗M ; C).
We refer to [KSZ23] for both the motivation of this notation and the proof of the

equivalence of above definitions (for the case C = Sp, and the general case follows from
Proposition 2.6.

Therefore, for [F ] ∈ T(T ∗M ; C), we can discuss the positive part of microsupport, say

SS+([F ]) := SS(F ) ∩ {τ > 0}
is a well-defined closed conic subset of T ∗M × R× (0,∞).

The construction is introduced by Tamarkin to study non-conic subsets Z ⊂ T ∗M .
Precisely, for a subset Z ⊂ T ∗M , we define its cone as

Ẑ := {(q, p, t, τ) ∈ T ∗M × R× (0,∞) : (q, p/τ) ∈ Z}.

The conic set Ẑ is closed in T ∗M ×R× (0,∞) if Z is closed in T ∗M , and in this case we

denote TZ(T
∗M ; C) the full subcategory spanned by those [F ] such that SS+([F ]) ⊂ Ẑ.

Proposition 2.8. For a conic closed set Z ⊂ T ∗M , we have

TZ(T
∗M ; C) ≃ ShZ(M ; Sp)⊗ TC ≃ ShZ(M ; C)⊗ TSp.

Proof. By Theorem 3.2, we have TV×X(T ∗V ; Sp) ≃ TX×V (T
∗V ∨; Sp). We notice that V

is a conic closed set in V = (V ∨)∨. Then TX×V (T
∗V ∨; Sp) ≃ ShX×V (V

∨; Sp)⊗ TSp by
Proposition 2.8.

Lastly, recall that ShX×V (V
∨; Sp) consists of sheaves H ∈ Sh(V ∨; Sp) with the usual

microsupport bound SS(H) ⊂ X × V . We notice that π(SS(H)) = supp(H) for the
cotangent projection. Henceforth, we have SS(H) ⊂ X×V if and only if H is supported
in X. In particular, it shows that ShX×V (V

∨; Sp) ≃ Sh(X; Sp). □

Remark 2.9. For V = R and X = (−∞, 0]. A consequence of Proposition 3.3, we
can pass to the quotient of Sh(R;TSp) by ShR×(−∞,0](R;TSp) ≃ TR×(−∞,0](T

∗V ; Sp) ≃
Sh((−∞, 0];TSp) to see that

TSp ⊗ TSp ≃ Sh((0,∞);TSp).

This is [Sch25, Proposition 6.1], and the proof here is slightly different.

3. Fourier-Sato-Tamarkin transform

In this section, we only consider C = Sp. This restriction does not affect generality in
our discussion due to Proposition 2.6.

The Fourier-Sato transform was first introduced by Sato in [SKK73]. We refer to
[KS90, Section 3.7] for more the relevant discussion. The Fourier-Sato transform gives
an equivalence between R>0-equivariant sheaves on V and V ∨ for real vector space V .
To adapt to various non-equivariant situations, one can consider some variants of the
Fourier-Sato transform. We refer to [D’A13, Gao17] for more relevant discussion on their
definition and the comparison between them.

In [Tam18], Tamarkin introduces a variant of the Fourier-Sato transform Sh(V ;T) →
Sh(V ∨;T) that induces an equivalence for sheaves that are not necessarily R>0-equivariant.
We call it the Fourier-Sato-Tamarkin transform.
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We naturally identify both T ∗V and T ∗V ∨ with V × V ∨. Let Leg(V ) = {(z, ζ, t, s) :
t− s+ ⟨z, ζ⟩ ≥ 0} ⊂ V × V ∨ × R2. We consider

SLeg(V ) ∈ Sh(V × V ∨ × R2; Sp),

pV : V × V ∨ × Rt × Rs → V × Rs,

pV ∨ : V × V ∨ × Rt × Rs → V ∨ × Rt.

Definition 3.1. The Fourier-Sato-Tamarkin transform is defined as the functor

FST : T(T ∗M ; Sp) → T(T ∗V ∨; Sp),

FST(F ) := pV ∨!(p
∗
V F ⊗Sp SLeg(V ))[dimV ].

It is proved in [Tam18, Theorem 3.5] that the Fourier-Sato-Tamarkin transform FST
is an equivalence of categories.

Theorem 3.2. The Fourier-Sato-Tamarkin transform FST is an equivalence of cate-
gories: For a closed set X ⊂ V ∨, we have

TV×X(T ∗V ; Sp) ≃ TX×V (T
∗V ∨; Sp).

This yields the following result

Proposition 3.3. Let V be a finite dimensional real vector space and X ⊂ V ∨ be a
closed set. We have

TV×X(T ∗V ; Sp) ≃ Sh(X;TSp).

Proof. By Theorem 3.2, we have TV×X(T ∗V ; Sp) ≃ TX×V (T
∗V ∨; Sp). We notice that V

is a conic closed set in V = (V ∨)∨. Then TX×V (T
∗V ∨; Sp) ≃ ShX×V (V

∨; Sp)⊗ TSp by
Proposition 2.8.

Lastly, recall that ShX×V (V
∨; Sp) consists of sheaves H ∈ Sh(V ∨; Sp) with the usual

microsupport bound SS(H) ⊂ X × V . We notice that SS(H) ∩ 0V ∨ = supp(H). Hence-
forth, we have SS(H) ⊂ X × V if and only if H is supported in X. In particular, it
means that ShX×V (V

∨; Sp) ≃ Sh(X; Sp). □

4. Localizing invariants

Let E be an accessible stable category (not necessarily cocomplete). Recall that a
functor F : Catdualst → E is a continuous localizing invariant if the following conditions
hold:

(i) F (0) = 0;
(ii) for any bi-fiber sequence of the form

A → B → C
in Catdualst the sequence

F (A) → F (B) → F (C)
is a fiber sequence in E .

Roughly speaking, the main result of [Efi24] is that a localizing invariant is determined
by its value on compactly generated categories, and all localizing invariants come in this
way.
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Remark 4.1. In general, we should be careful about accessibility of localizing invariants.
Here, we will only discuss finitary localizing invariants, i.e. those commute with filtered
colimits.

Among all finitary localizing invariants, there exists a universal one, which was origi-
nally studied by [BGT13] on compactly generated categories, and was later extended to
dualizable stable categories by [Efi24].

More precisely, there exists an ω-accessible stable category Motloc that is called the
category of non-commutative motives and a universal finitary localizing invariant Ucont

loc :

Catdualst → Motloc which is initial among all finitary localizing invariants:

FunL(Motloc, E) ≃ Funloc,ω(Cat
dual
st , E), G 7→ F = G ◦ Ucont

loc .

Therefore, many properties of Ucont
loc are automatically shared by all finitary localizing

invariants.
The following standard observation follows directly from the definition.

Lemma 4.2. For a localizing invariant F : Catdualst → E and a dualizable stable category
C, we have F (C ⊗ −) : Catdualst → E is a localizing invariant.

Now, we will discuss localizing invariants of ShV×X(V ; C) ≃ ShV×X(V ; Sp)⊗C. Then
by Lemma 4.2, we may assume C = Sp in the following proofs.

To start with, we present a proof of the 1-dimension Theorem 1.2 based on Theo-
rem 1.1. The idea is to reverse the process of the original proof presented in [Efi22].

Proposition 4.3. We have Ucont
loc (ShR×[0,∞)(R; C)) ≃ 0 and Ucont

loc (TC) ≃ ΩUcont
loc (C).

Proof. One can check that we have the following Cartesian square of dualizable stable
categories. See also [KZ25, Theorem 6.16] for a detailed proof of its generalization.

Sh(R; Sp) ShR×[0,∞)(R; Sp)

ShR×(−∞,0](R; Sp) ShR×{0}(R; Sp).

The map x 7→ −x identifies ShR×[0,∞)(R; Sp) ≃ ShR×(−∞,0](R; Sp). Therefore, by
[Efi24, Proposition 4.11], we have the fiber sequence in Motloc:

Ucont
loc (ShR×[0,∞)(R; Sp))⊕2 → Ucont

loc (ShR×{0}(R; Sp)) → ΣUcont
loc (Sh(R; Sp)).

One can directly check that the second morphism is induced by the loop-suspension ad-
junction of Ucont

loc (Sp), which yields an equivalence. Then we have Ucont
loc (ShR×[0,∞)(R; Sp)) ≃

0.
For the next, we consider the bi-fiber sequence

TSp → ShR×[0,∞)(R; Sp) → Sp.

Then the second statement follows directly from the fact that Ucont
loc is a localizing in-

variant the first equivalence. □

Now, we can state our theorems.

Theorem 4.4. Let V be a finite dimensional real vector space and and let X ⊂ V ∨ be
a closed set.
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(1) We have the equivalence:

Ucont
loc (TV×X(T ∗V ; Sp)) ≃ Γc(X;Ucont

loc (TC)) ≃ ΩΓc(X;Ucont
loc (C));

(2) If X is in addition conic, then we have

Ucont
loc (ShV×X(V ; C)) ≃ Γc(X;Ucont

loc (C)).

In particular, the same statements hold for any finitary localizing invariant in place of
Ucont
loc .

Proof. (1) This is a direct corollary of Theorem 3.2, Theorem 1.1 and Proposition 4.3.
(2) By Proposition 2.8, when X is conic, we have

TV×X(T ∗V ; Sp) ≃ ShV×X(V ; C)⊗ TSp.

By Lemma 4.2 and (1), we have for any localizing invariants F that F (TSp) ≃ ΩF (Sp).
Taking F = Ucont

loc (ShV×X(V ; C)⊗−), we obtain

Ucont
loc (ShV×X(V ; C)) ≃ΣUcont

loc (ShV×X(V ; C)⊗ TSp)

≃ΣΓc(X;Ucont
loc (TSp ⊗ C))

≃ΣΓc(X; ΩUcont
loc (C))

≃Γc(X;Ucont
loc (C)),

where the second equivalence follows from (2-a) and the last equivalence follows from
Proposition 4.3. Then we conclude the proof. □

Let X ⊂ V ∨ be closed, and set U = V ∨ \X, we can consider the quotient category
(see [KSZ23, Section 5] for more details)

T(V × U ; C) := T(T ∗V ; Sp)/TV×X(T ∗V ; Sp),

and, if X is conic and then U is also conic, we can consider

Sh(V, V × U ; C) := Sh(V ; C)/ShV×X(V ; C)

as in [KS90, Definition 6.1.1].
We then obtain the following consequence:

Corollary 4.5. Let V be a finite dimensional real vector space and a closed set X ⊂ V ∨

with U = V ∨ \X.

(1) We have the equivalence:

T(V × U ; C) ≃ ΩΓc(U ;Ucont
loc (C));

(2) If X is in addition conic, then we have

Ucont
loc (Sh(V, V × U ; C)) ≃ Γc(U ;Ucont

loc (C)).

In particular, the same statements hold for any finitary localizing invariant in place of
Ucont
loc .
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Proof. We prove (2); the argument for (1) is analogous.
By Proposition 2.5, we know the quotient functor Sh(V ; C) → ShV×X(V ; C) is strongly

continuous. This yields a fiber sequence in Catdualst

Sh(V, V × U ; C) → Sh(V ; C) → ShV×X(V ; C).
Applying Ucont

loc to the sequence, then the result follows from the fiber sequence

Γc(U ;Ucont
loc (C)) → Γc(V

∨;Ucont
loc (C)) → Γc(X;Ucont

loc (C)). □

4.1. Further questions. At the end of this article, we mention that for a general
cotangent bundle T ∗M and an open set D, it is known that the Tamarkin category

T(D; C) = T(T ∗M ; C)/TT ∗M\D(T
∗M ; C)

has important symplectic geometric information of the open symplectic manifold D, and
it is conjectured that the filtered Fukaya category Ffil(D) should be a full subcategory
of T(D; C).

For example, the Hochschild homology was studied in [Zha23, KSZ23]. It is proven
that corresponding Hochschild homology is deeply related to the symplectic cohomology
of U (when D has good contact boundary).

One may be naturally interested in the computation of

Ucont
loc (T(D; C))

or any specific finitary localizing invariants instead of Ucont
loc . Here, our result is the first

attempt for the question for D = V × U for a real vector space V and an open set
U ⊂ V ∨.
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