
LECTURES ON TORIC VARIETY

BINGYU ZHANG

This is the lecture notes for the topics course Advance topics in Quantum Mathematics at
SDU spring 2025. We will cover basic knowledge on toric variety. The main reference of the note
is [CLS11]. We require the readers have a basic knowledge of algebraic geometry (for example,
covering [Har77, Section 1.1-1.4, 2.1-2.8], but not necessarily solid).

We will try to achieve two goals: 1) Construction of Calabi-Yau hypersurfaces in toric vari-
eties. 2) Proof of a version of homological mirror symmetry for toric variety (precisely, the so
called Coherent-Constructible correspondence).

Throughout, we will consider algebraic varieties over C.

1. Algebraic tori

For an algebraic tori, we mean the variety

Tn = (C×)n = {(x1, · · · , xn) : xi ∈ C×}.
To emphasize its group structure, we also use the notation T1 = Gm and Tn = Gn

m, where m
here means multiplication. In case there is no confusion, we also write T without the dimension.

Proposition 1.1. The variety Tn is affine and smooth with the coordinate ring C[Zn] =
C[x±1

1 , · · · , x±1
n ].

Proof. We can identify Tn ↪→ C2n as

{(x1, y1, · · · , xn, yn) : xiyn = 1, i = 1, · · · , n}.
Then it is clear that Tn is affine and the coordinate ring is identified with

C[x1, y1, · · · , xn, yn]
⟨xiyi − 1; i = 1, · · · , n = 1⟩

= C[x±1
1 , · · · , x±1

n ]. □

The smoothness can be tested using the defining equation above by the Jacobian criterion.

In fact, the group structure is given by polynomials. So Tn = Gn
m is actually an affine

algebraic group. It is the simplest reductive algebraic group (we will not use this fact).
Next, we consider characters. We define M = HomAlgGrp(Tn,Gm) as the multiplicative

abelian group of algebraic group homomorphisms (roughly speaking, both polynomial maps
and group homomorphisms) induced from multiplicative group structure on Gm.

Proposition 1.2. We have M ≃ Zn (as abelian groups) via the homomorphism

Zn →M, a 7→ [x 7→ χa(x) = xa11 · · ·x
an
n ].

Proof. It is easy to check that the given map is injective group homomorphism. Be careful,
we use additive group structure on Zn and multiplication on M . It is a group homomorphism
means χa+b = χaχ

b. Then we only need to check it is surjective.
For f ∈M , i.e. f : Tn → Gm. By Proposition 1.1, and f is a algebraic morphism, we have a

ring homomorphism

f∗ : C[t±1]→ C[x±1
1 , · · · , x±1

n ].

Regard t : Gm → Gm as the identity polynomial function. Because t is an invertible element in
the ring C[t±1], we must have f∗(t) invertible in the target. Then we have f∗(t) = cχa for some
c ∈ C. On the other hand, f is a group homomorphism, then we have f(1, · · · , 1) = 1. Then
we have

c = cχa(1, · · · , 1) = f∗(t)(1, · · · , 1) = t(f(1, · · · , 1)) = t(1) = 1.
1
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Then we have f(x) = t(f(x)) = f∗(t)(x) = χa(x), which means that f = χa. I.e. all algebraic
group homomorphisms f : Tn → Gm are of the form χa. □

We have a similar result for cocharacter (or 1-parameter subgroup).

Proposition 1.3. For the abelian group of algebraic group homomorphism N = HomAlgGrp(Gm,Tn).
We have N ≃ Zn (as abelian groups) via the homomorphism

Zn → N, b 7→ [t 7→ λb(t) = (tb1 , · · · , tbn)].

With the identification, we notice that we have an isomorphism

(1.1) Tn ≃ N ⊗Gm.

It is clear we have a pairing between M and N

M ×N → HomAlgGrp(Gm,Gm), (χa, λb) 7→ χa ◦ λb : Gm → Gm.

By identification Proposition 1.2 and Proposition 1.3, the pairing matches the perfect pairing

Zn × Zn → Z, (a, b) 7→ a1b1 + · · · anbn.

Convention: Normally, we fixed that M (N) to be the (co)character lattice of a tori Tn, as
well as their perfect pairing. But we do NOT fix a identification of M,N with Zn! For an
abelian group K, we denote MK, NK as M ⊗K, N ⊗K. Typically, we take K = Q,C,R,Gm

a.

aIn this lecture, we will never use Q actually.

In the end, we consider the complete reducibility of Tn. Recall that there is an Tn-action on
C[M ] = C[x±1

1 , · · · , x±1
n ]: for f ∈ M , we define fg(x) = f(g · x) for x ∈ Tn. It is clear that

Cχa = {cχa : c ∈ C} is an invariant subspace of C[M ] for all χa, and it is the eigenspace in the
sense Cχ = {f ∈ C[M ] : fg = χa(g)f, ∀g ∈ Tn}.

We have the following property

Proposition 1.4 ([CLS11, Proposition 1.1.16]). (Exercise 1.1) For an Tn invariant subspace
A ⊂ C[M ], we have the following eigenspace decomposition

A =
⊕
χa∈A

Cχa.

Remark and Hints: It is cleat that the right hand side is a subspace of the left hand side.
The point of the proof is that the inclusion is an equal, and essentially, the non-trivial point
here is that it is a direct sum rather than direct product. This comes from the fact that
the action Tn × Tn → Tn is algebraic, which means that there exists a ring homomorphism
C[M ]→ C[M ]⊗C C[M ] and the right hand side is a “polynomial ring”.
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2. Toric variety

Definition 2.1. A toric variety is an algebraic variety X satisfies the following conditions:

(1) X is irreducible, separated and normal.1

(2) There exists an effective algebraic action Tn×X → X. (Effective means that Tn → Aut(X)
is injective.)
(3) There exists x ∈ X such that its orbit Tn · x is isomorphic to Tn and form an open dense
subset of X w.r.t Zariski topology.

As we mentioned in the footnote 1, we will mainly focus on the condition (2) and (3) here.

Example 2.2. (1) For X = Cn, we have the standard diagonal tori action on Cn, which is
effective. An open dense tori orbit can be given by Tn = Tn · (1, · · · , 1).
(2) ForX = Pn, we have the tori action on Pn via (z1, · · · , zn)·[x0, x1, · · · , xn] = [x0, z1x1, · · · , znxn],
which is effective. An open dense tori orbit can be given by Tn = Tn · [0, 1, · · · , 1].
(3) Product of toric varieties is toric.

Toric variety has an open dense tori, so they are all birational equivalent. In particular, we
have

Proposition 2.3. The field of rational functions (in the fancy sense) on a toric variety is the
field of rational functions (in the very traditional sense).

Proof. As we have seen that any toric variety are birational equivalent. In particular, birational
equivalent to Cn. Then rational function field of toric variety is isomorphic to rational function
field of Cn, which is the field of fraction of of polynomials. □

The main structure theorem is the following

Theorem 2.4 (Sumihiro). For a toric variety X, there exists a (finite2) Tn-equivariant open
cover where open sets are affine toric varieties.

It motives us to classify affine toric varieties.

Example 2.5. We know that Pn = ∪ni=0Cn
i where Cn

i = Pn \ {xi = 0} is an affine toric cover.

1Under classical topology, irreducible basically means connected, separated basically means Hausdorff. Normal
is more tricky, which basically means that for any point, there is an connected punctured neighborhood; in fact,
under the classical topology, normal varieties are stratified pseudomanifolds. Normality implies that singularity
occurs only in codimension 2, and certain Hartogs extension exists. In this course, we only consider normal toric
varieties, and you can skip all discussion about normality if you don’t know what it actually means.

2This finiteness is a general property for algebraic varieties.
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3. Affine toric variety

In this section, we classify all affine toric varieties. For X toric, we assume X = Spec(A) for
an commutative algebra A. Then A is the ring of polynomial functions on X.

By definition of toric variety, T is an Zariski open dense set of X, we have that for any
polynomial function f ∈ A (that is continuous w.r.t. Zariski topology), it is determined by its
restriction on T. Therefore, we have that A can be view as an subalgebra of C[M ] where M is
the character lattice of T via the open inclusion T ⊂ X.

Moreover, T is an T-invariant open set of X, we have that A is T-invariant subalgebra of
C[M ]. Then by Proposition 1.4, we have that there exists a set

S = {χm ∈M : χm ∈ A}

such that A = ⊕χm∈ACχm.

Example 3.1. (1) For X = T, it is clear by definition of Laurent polynomial ring that S =M .
(2) For X = Cn, then we know that A = C[x1, · · · , xn]. It is clear by definition of polynomial
ring that S ≃ Nn.

Here, one feature is that S should be a sub-monoid of M . In fact, we have

Proposition 3.2. (Exercise 3.1) The set S define above satisfying the following properties:

(1) 1 ∈ S and if χm, χn ∈ S, then χm+n = χmχn ∈ S.
(2) If χk

m ∈ S, then χm ∈ S.
(3) S is finitely generated as a monoid.

In the proposition, we use the multiplicative notation for the abelian group structure. Under
an identification M ≃ Zn, we can also think S as an additive sub-monoid of Zn. In the future,
we will basically only use this additive convention.

By Proposition 3.2-(3), we can assume that

S = Nχ1 + · · ·Nχr ⊂M.

We set3

τ = Cone(χ1, · · · , χr) = {
∑

aiχi : ai ≥ 0} ⊂MR.

(" This paragraph contains some definitions.) Then we know that τ is a rational, polyhedral
convex cone, and S = τ ∩M is saturated in the sense of Proposition 3.2-(2). Here, rational
means that it is generated by integer vectors with respect to a fixed lattice M (so it is better to
say it is M -rational); and polyhedral means that τ is given by finite intersection of half-spaces.

In summary, we have

Theorem 3.3. If X is an affine toric variety, then there exists an rational polyhedral convex
cone τ ⊂MR such that

X = Spec(C[τ ∩M ]).

Here, C[τ ∩M ] means the monoid ring generated by the monoid τ ∩M .

Conversely, we have

Theorem 3.4. (Exercise 3.2) For any rational polyhedral cone τ ⊂ MR such that τ ∩M is
saturated (saturation implies normality). Then

Xτ = Spec(C[τ ∩M ]).

is an affine toric variety.

Remark 3.5. The theorem basically says that, if χ ∈ τ ∩ M , then χ can be extended to a
polynomial function χ̃ on Xτ whose restriction on T is χ.

3Convention: Cone(∅) := {0}.
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These two theorems completely classify affine toric varieties.
We also notice the following relation: if τ1 ⊂ τ2 is a inclusion of rational polyhedral cones

(we require saturation), then there exists an algebraic morphism Xτ2 → Xτ1 .
Using the description of M , we learn information about polynomial functions on affine toric

varieties. We also need a dual description on N to describe 1-parameter subgroups in affine
toric varieties. Recall that there exists a perfect pairing between M and N . Then for a cone
σ ⊂ NR, we can define

σ∨ := {m ∈MR : ⟨m,n⟩ ≥ 0,∀n ∈ NR} ⊂MR.

Example 3.6. Here, we draw σ in blue and draw σ∨ in green.

z1

z2

O

z1

z2

O

z1

z2

O

Figure 1. Cones and dual cones

We have the following simple linear algebra lemma

Lemma 3.7. For a N -rational, polyhedral convex cone σ ⊂ NR, we have:

(1) τ = σ∨ is M -rational and polyhedral;
(2) (σ∨)∨ = τ∨ = σ;
(3) For τ = σ∨, τ ∩M is saturated if and only if σ is strongly convex (i.e. σ+ (−σ) = {0},

or equivalently, there is no line in σ).

We the notation above, we introduce the notation

Xσ := Xσ∨
= Spec(C[σ∨ ∩M ]).

Then we have the following property

Proposition 3.8. For a N -rational, polyhedral convex cone σ ⊂ NR and λ ∈ N , we define

λ̃ : C× λ−→ T→ Xσ. Then we have that λ̃ extends to a curve λ̃ : C→ Xσ if and only if λ ∈ σ.

Proof. For χ ∈M , we have

χ(λ̃(t)) = t⟨χ,λ⟩.

So, limt→0 λ̃(t) exists in Xσ if and only if ⟨χ, λ⟩ ≥ 0 for all χ ∈ σ∨, which is equivalent to that
λ ∈ (σ∨)∨ = σ. □

Lastly, we consider smoothness of affine toric varieties. Strongly convex N -rational, polyhe-
dral convex cone σ ⊂ NR can be generated by a canonical set of generators: Any edge ρ of σ
is a ray (i.e. linearly equivalent to R≥0) since there is no lines in σ. Then ρ ∩ N ≃ Nuρ for a
unique uρ. We call uρ the ray generator of ρ. We have the following combinatorial lemma

Lemma 3.9. Strongly convex N -rational, polyhedral convex cone σ ⊂ NR is generated by its
ray generators of its edges.

We call the ray generators of edges the minimal generators of σ.
Now, we state the theorem without proof (even not for exercise).

Theorem 3.10. For a strongly convex rational polyhedral convex cone σ ⊂ NR, we have

(1) Xσ is smooth if and only if σ ∩N is smooth in the sense: the minimal generators of σ
form a Z-basis of N .
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(2) Xσ has orbifold singularities if and only if σ is simplicial in the sense: the minimal
generators of σ ∩N form a Z-linearly independent set of N .

Summary: You can randomly pick a strongly convex rational polyhedral cone σ ⊂ NR, then
you can obtain a unique affine toric variety Xσ: by Lemma 3.7, σ∨ ∩M is saturated, then you
can apply Theorem 3.4 to obtain Xσ, which is unique by Theorem 3.3. Then you can test Xσ

is smooth or not by study the minimal generator of σ.

In the rest of this section, we make some example to test.

Example 3.11. (1) Consider σ = R2
≥0 in N = Z2, we have σ∨ = R2

≥0 as well. Then σ∨ ∩M =

N2 and Xσ = Spec(C[N2]) = C2.

z1

z2

O

σ

z1

z2

O

σ∨

(2) Consider the following cones. Where thick arrow means minimal generators So, we can see

σ

z1

z2

O

σ∨

z1

z2

O

that

C[σ∨ ∩M ] = C[x1, x22/x1] ≃
C[u, v, w]
⟨uw = v2⟩

by change of coordinates u = x1, v = x2 and w = x22/x1.
Therefore, Xσ is the cone singularity (or A1-singularity) C2/Z2, which is a orbifold singular-

ities. This is clear from our combinatorial criterion: the minimal generators (2, 1), (0, 1) of σ
are Z-linear independent but not a base (they cannot generate (1, 0) for example).
(3) For N = Z3, pick e1, e2, e1 + e3, e2 + e3 as minimal generators to generate a cone. One can
check that

σ∨ = Cone(e1, e2, e3, e1 + e2 − e3).
Then we have

C[σ∨ ∩M ] = C[x1, x2, x3, x1x2/x3] ≃
C[u, v, w, z]
⟨uv = wz⟩

by change of coordinates u = x1, v = x2, w = x3 and z = x1x2/x3. {uv = wz} is the conifold
singularity, which, as kind of common sense, known not to be a orbifold singularity. It can be
tested by our combinatorial criterion since e1, e2, e1 + e3, e2 + e3 do not even form a Z-linearly
independent set.

(4) (Exercise 3.3) For two strongly convex polyhedral cones σ1 ⊂ (N1)R, σ2 ⊂ (N2)R, we have

Xσ1×σ2 ≃ Xσ1 ×Xσ2 .
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xy

z

In the rest of the section, we study toric morphism between affine toric varieties.
(Exercise 3.4) For two strongly convex polyhedral cones σ1 ⊂ (N1)R, σ2 ⊂ (N2)R, and a

Z-module morphism ϕ : N1 → N2. Then we we have an algebraic group homomorphism
ϕ = ϕ ⊗ C× : T1 → T2 (notice here, subscript does not mean dimension, only indicates that
there are two things). Prove that ϕ extends to a ϕ-equivariant morphism ϕ : Xσ1 → Xσ2 if and
only if ϕ⊗R(σ1) ⊂ σ2. We shall call equivariant morphisms defined in this way toric morphisms.

Let us give an example for it.

Example 3.12. Here, we notice that we did not fix identifications N = Zn in general. We
produce an example using this feature.

We take N1 = (2Z)2 and N2 = Z2. However, we have (N1)R = (N2)R = R2. Now, we take
σ1 = σ2 = R2

≥0 as Example 3.11-(1). It is clear that both of affine toric varieties are C2.

Then Exercise 3.4 shows that the inclusion map N1 ⊂ N2 induces a toric morphism ϕ : C2 →
C2. We check that the map is not identity.

In fact, we should haveM1 = (Z/2)2 andM2 = Z2. Then σ∨1 ∩M1 = (N/2)2 and σ∨2 ∩M2 = N2.
Here, we identify xi with 1/2ei in forming monoidal algebra, then we have

C[σ∨1 ∩M1] = C[x1, · · · , xn], C[σ∨2 ∩M2] = C[x21, · · · , x2n].
Then we know that the inclusion map N1 ⊂ N2 induces

ϕ : C2 → C2, (x1, · · · , xn) 7→ (x21, · · · , x2n).



LECTURES ON TORIC VARIETY 8

4. Fan and toric variety

Recall the Sumihiro Theorem 2.4. It tells that we can always find an affine toric open cover.
It encourage us to glue affine toric varieties with certain combinatorial data given.

Definition 4.1. A fan (N,Σ) is pair consist of a lattice N and a finite set Σ of subsets of NR
such that

(1) If σ ∈ Σ, then σ is a N -rational strongly convex polyhedral cones in NR.
(2) For σ ∈ Σ, and if τ is a face of σ (where we denoted by τ ≺ σ), then τ ∈ Σ 4.
(3) For σ1, σ2 ∈ Σ, we have σ1 ∩ σ2 is a face for both σi. (Then σ1 ∩ σ2 is in Σ by (2)).

When N is clear, we often say Σ a fan.

So, the full classification theorem for toric variety is

Theorem 4.2. Toric varieties are 1-1 correspondences to fans.

We refer to [CLS11, Section 3.1] for more details. In this section, I will explain how to
construct a toric variety from a fan (this part is is useful). The other direction need more
technical tool that we will explain in Section 5 (but it is clear that if you want to use toric
varieties in your research, this direction is useless.)

Remark 4.3. Let us pay attention to affine toric variety. For an strongly convex N -rational
polyhedral cone σ, we can associate Xσ, then what is the fan of it as predicted here? The
answer is (N,Σ) that produce Xσ is exactly given by the fan spanned by all faces of σ. You can
verify this by hand.

Example 4.4. Here, we consider two examples of fans with N = Z2.

(1) We have Σ = {{0},R≥0e1,R≥0e2,R≥0(e1 + e2), σ1, σ2}.
(2) We have Σ = {{0},R≥0e1,R≥0e2,R≥0(−e1 − e2), σ1, σ2, σ3}.

z1

z2

O

σ1

σ2

(1)

z1

z2

O

σ1

σ2

σ3

(2)

Figure: In these two figures, we only mark top dimension cones. While, rays
and the origin are also cones in these fans.

(3) This example will explain the importance of specifying N . We set u1 = (2, 1), u2 = (0, 1).
We consider the cone σ = Cone(u1, u2) ⊂ R2. We set Σ = {{0},R≥0u1,R≥0u2, σ}.

Now, we take N1 = Z2 and N2 = Zu1 ⊕ Zu2. Then N2 is a sublattice of N1, and (N2)R =
(N1)R = R2. So, we can think (N1,Σ) and (N2,Σ) as two fans. Since these two fans are
associated with cone, we can see that both of them are affine. However, by Example 3.11-(1)
and (2), we see that X(N2,Σ) ≃ C2 is smooth and X(N1,Σ) ≃ C2/(Z2) is the A1-singularity.

Now, we define a toric variety using a fan. First of all, for each σ ∈ Σ, we have construed an
affine toric variety Xσ = Spec(C[σ∨ ∩M ]). To emphasize it is an open set in a general toric
variety, we use Uσ to denote Xσ here.

To glue them, we should understand relation for two fans with a common face.

4It makes sense since σ is a cone polyhedral
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Lemma 4.5 (Exercise 4.1). For two cones in σ1, σ2 ∈ Σ, we set τ = σ1 ∩ σ2 (∈ Σ by definition
of fans). Then we have

(1) There exists an m ∈ σ∨1 ∩(−σ∨2 )∩M = (σ1−σ2)∨∩M such that σ1∩Hm = τ = σ2∩H−m

where Hm = H−m = {n ∈ NR : ⟨m,n⟩ = 0} is a hyperplane.
(2) With the notation above, we have τ∨ ∩M = σ∨1 ∩M + Z(−m).
(3) With the notation above, we have τ∨ ∩M = σ∨1 ∩M + σ∨2 ∩M .

Therefore, by Lemma 4.5-(2), we have

Uτ = Spec(C[σ∨1 ∩M + Z(−m)]) ≃ Spec(C[σ∨1 ][
1

χm
]] ≃ Uσ1 ∩ {χm ̸= 0}

open
⊂ Uσ1 .

So, we define the isomorphism of varieties by Lemma 4.5-(3)5

g21 : Uσ1 ∩ {χm ̸= 0} ≃ Uτ ≃ Uσ2 ∩ {χ−m ̸= 0}.
There is a tautological but tedious verification to show that, for σi ∈ Σ where i = 1, 2, 3, we

have the cocycle condition, when the following maps can be defined:

g21 = g−1
12 , g31 = g32g21.

Then we define an equivalent relation on
⊔

σ Uσ such that (σ1, x1) ≃ (σ2, x2) when x2 = g21(x1).
The cocycle conditions gurantee that this is indeed an equivalent relation.

Definition 4.6. We define

XΣ :=
⊔
σ

Uσ/ ≃ .

Theorem 4.7. We have that XΣ is a toric variety.

Proof. It is clear that, for each σ, Uσ is an Zariski open set, which is affine and toric. We skip
verification for irreducibility and separating. Normality is local, so it follows from normality of
Uσ.

Now, we can check that gij are T-equivariant, then we can glue all T-action on each Uσ. Each
Uσ has an open dense tori, then they are also open dense torus of XΣ since Zariski open sets in
an irreducible variety are always dense. □

Example 4.8. (1) Consider the fan given in Example 4.4-(2): Σ = {{0}, τ2 = R≥0e1, τ1 =
R≥0e2, τ3 = R≥0(−e1 − e2), σ1, σ2, σ3}. Now we explain that it gives XΣ = P2.

We have the following

Uσ1 = C2 = Spec(C[x, y])
Uσ2 = C2 = Spec(C[xy−1, y−1])

Uσ3 = C2 = Spec(C[x−1, x−1y])

Uτ1 = C× × C = Spec(C[x±1, y])

Uτ2 = C× C× = Spec(C[x, y±1])

Uτ3 = C× C× = Spec(C[(xy)−1, (x−1y)±1])

U{0} = C× × C× = Spec(C[x±1, y±1])

Let’s do computation for g, consider σ1, σ3 for example: They intersect at τ1. We naturally
have identifications of rings

C[x, y][
1

x
] = C[x±1, y] = C[x−1, x−1y][

1

x−1
]

which induces

Uσ1 ∩ {x ̸= 0} = Uτ1 = Uσ2 ∩ {x−1 ̸= 0}.

5In fact, with good choice of coordinates, you may find that many of g here are identity maps. Heuristically,
this is because all identifications here are quite natural
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σ∨1 σ∨2 σ∨3 τ∨1 τ∨2 τ∨3 {0}∨ = R2

Figure: Dual cones of the P2 fan.

Here, you may confuse of what are x, y here. In fact, consider the homogeneous coordinate
[x0, x1, x2] ∈ P2, we can actually find that x = x1/x0, y = x2/x0. It is easy to match that

Uσ1 = P2 \ {x0 ̸= 0}, Uσ2 = P2 \ {x2 ̸= 0}, Uσ1 = P2 \ {x1 ̸= 0}.
And the transition functors g is the same as those we defining P2. Then we can naturally
identify P2 = XΣ.

In general, consider the following fan Σ in Zn defines Pn: We set e0 = −e1 − · · · − en, and
Σ = {Proper subsets of {e0, e1, · · · , en}}.

(2) In fact, we can classify all fans of dimension 1: Except fans come from cone: {0} ↔ C× and
[0,∞)↔ C. The only new one is given by the P1 fan: {[0,∞), (−∞, 0], {0}}.
(3) (Exercise 4.2): Consider the following fan. Prove that the corresponding toric variety is the
Hirzebruch surface H2. (You can try either for just r = 2 or for general r.) In general, if we
change the ray generator (−1, 2) to (−1, r), we get the Hirzebruch surface Hr, i.e. the total
space of the P1-bundle P(O ⊕O(−r))→ P1 over P1.

z1

z2

O

Figure: Fan of the Hirzebruch surface H2

(4) Let (q0, q1, · · · , qn) ∈ Nn+1 with gcd(q0, q1, · · · , qn) = 1. ConsiderN = Zn+1/Z(q0, q1, · · · , qn).
We set ui the natural projection of ei ∈ Zn+1 onto N , and

Σ = {Proper subsets of {u0, u1, · · · , un}}.
Then we have XΣ = Pn(q0, q1, · · · , qn), the weighted projective space.

(5) (Exercise 4.3): For two fans Σ1 and Σ2, we define

Σ1 × Σ2 = {σ1 × σ2 : σi ∈ Σi, i = 1, 2}.
Prove that i) Σ1 × Σ2 is a fan. ii) XΣ1×Σ2 ≃ XΣ1 ×XΣ2 .
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5. Orbit-Cone correspondence

Now, we discuss the Orbit-Cone correspondence (OCC for short) for toric varieties. It is a
crucial technical result.

To begin with, we start from defining a specific (closed) point on an affine toric variety.
For a strongly convex rational polyhedral cone σ ⊂ NR, we have the following 1-1 correspon-

dences

{(closed) points in Xσ}
↕

{C-algebra homomorphisms: C[σ∨ ∩M ]→ C}
↕

{Monoid homomorphisms: σ∨ ∩M → C}.
The first one is the Yoneda, and the second one comes from the universal property of monoidal
algebra.

Therefore, we define a point pσ by the monoidal homomorphism σ∨ ∩M → C:
m 7→ 1,m ∈ σ⊥ ∩M ; m 7→ 0,m ∈ σ∨ ∩M \ σ⊥.

Geometrically, we can characterize the point pσ in the following way

Proposition 5.1 (A precise version of Proposition 3.8). For a strongly convex rational polyhe-

dral cone σ ⊂ NR, and b ∈ RelInt(σ) ∩N (footnote here 6). Then we have limt→0
‹λb(t) = pσ.

Proof. By Proposition 3.8, the limit always exists since RelInt(σ) ⊂ σ. As we computedin

Proposition 3.8, for every m ∈ σ∨ ∩ M , we have ⟨m, limt→0
‹λb(t)⟩ = limt→0 t

⟨m,b⟩. There-
fore, if b ∈ RelInt(σ), which actually means that ⟨m, b⟩ > 0 for m ∈ σ∨ ∩M \ σ⊥, we have

that limt→0 t
⟨m,b⟩ → 0. Similarly, we prove that for m ∈ σ⊥ ∩ M , we have ⟨m, b⟩ = 0 and

limt→0 t
⟨m,b⟩ → 1.

This exactly means that limt→0
‹λb(t) = pσ. □

Remark 5.2. In fact, this proposition is enough to determine all possible limits: If b is not in
the relative interior of σ, then it must means that it is in a face τ of σ. So, we can ask again
that if b is in the relative interior of τ , and then continuous. This process will stop in finite
steps since our cones are all finite dimensional.

Now, we state the following theorem without proof. We refer to [CLS11, Section 3.2] for its
proof. (Actually, it is not hard, just long.)

Theorem 5.3 (Orbit-Cone correspondence). For a fan Σ and its toric variety XΣ, we have:

(1) There is a 1-1 correspondence

{Cones in Σ} ↔ {T− orbits in XΣ}, σ 7→ O(σ) := T · pσ.
(2) We have

dimO(σ) + dimσ = dimNR.

The first dimension is the Krull dimension of varieties, the second is the dimension of the vector
space spaned by σ, the third is the dimension of vector spaces.
(3) We have

Uσ =
⋃
τ≺σ

O(τ).

(4) We have

τ ≺ σ ⇐⇒ O(σ) ⊂ O(τ)

and
O(τ) =

⋃
τ≺σ

O(σ).

Here the closure in both Zariski topology and analytic topology are the same.

6Here, if σ ≃ Rm
≥0 ⊂ Rn (0 < m ≤ n), we mean that RelInt(σ) is given by Rm

>0; we also set RelInt({0}) = {0}
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Example 5.4. Again, let us test the result using P2: recall the fan given in Example 4.4-(2):
Σ = {{0}, τ2 = R≥0e1, τ1 = R≥0e2, τ3 = R≥0(−e1 − e2), σ1, σ2, σ3}.

We have the following table: for b in the relative interior oif the cone of in first row, the
second row gives the corresponding limit limt→0 λ

u(t). Then it is easy to describe all possible

Cones σ1 σ2 σ3 τ1 τ2 τ3 {0}
limt→0 λ

b(t) [1, 0, 0] [0, 0, 1] [0, 1, 0] [1, 1, 0] [1, 0, 1] [0, 1, 1] [1, 1, 1]

T2-orbits. Let me do some specific examples to illustrate:

• For b = (2, 1) ∈ RelInt(σ1), λ
b(t) = [1, t2, t] → [1, 0, 0]. Then O(σ1) = [1, 0, 0] is a fixed

point (which can be seen by OCC since σ1 is 2 dimension).
• For b = (2, 0) ∈ RelInt(τ2), λ

b(t) = [1, t2, 1] → [1, 0, 1]. Then O(τ2) = {[1, z, 0] : z ̸=
0} ≃ C×.
• For b = (0, 0) ∈ RelInt({0}), λb(t) = [1, 1, 1]→ [1, 1, 1]. Then O({0}) = {[1, z1, z2] : zi ̸=
0} ≃ (C×)2 is the big tori.

Here, we state the following theorem.

Theorem 5.5. For a fan Σ, we have

(1) XΣ is smooth (orbifold) if and only if ∀σ ∈ Σ, σ is smooth (simplicial).
(2) Xσ is compact if and only if the support of the fan |Σ| = ∪σ∈Σσ equals NR.

Proof. For the first one, the conclusion is local. So follows from the affine result Theorem 3.10.
For the second statement, from compactness to the supportive follows from Proposition 5.1.

The other direction is harder and need OCC Theorem 5.3, we skip it. Try to convince yourself
from examples (above and below). □

(Exercise 5.1): Use Proposition 5.1 to show one direction of Theorem 5.5-(2): ifXΣ is compact
(or complete in algebraic geometry), then |Σ| = ∪σ∈Σσ = NR.

We finish this section by considering the following result on a precise form of singularity
distribution, which is left as (Exercise 5.2)

Proposition 5.6 ([CLS11, Proposition 11.1.2]). For a toric variety of fan Σ, we have

(XΣ)sing =
⋃

σ is not smooth

O(σ), (XΣ)reg =
⋃

σ is smooth

Uσ.
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6. Toric morphism

In fact, we have discuss toric morphism in affine situation in Exercise 3.4. As usual, the
general case is just pinch together all local information.

For two fans (together with lattices): (Σ1, N1) and (Σ2, N2) and a Z-linear map ϕ : N1 → N2.
We say ϕ is compatible with two fans if ∀σ1 ∈ Σ1, ∃σ2 ∈ Σ2 such that ϕ⊗ R(σ1) ⊂ σ2.

Proposition 6.1. If ϕ is compatible with (Σ1, N1) and (Σ2, N2), then ϕ ⊗ C× extends to an
(ϕ⊗ C×-)equivariant algebraic map ϕ : XΣ1 → XΣ2.

Proof. This is just the global version of one direction of (Exercise 3.4). □

Proposition 6.2. If an equivariant map f : XΣ1 → XΣ2 restricts to a group homomorphism
T1 → T2. Then there exists a ϕ that is compatible with fans such that f = ϕ.

It is also the other direct of the global version of (Exercise 3.4). But here, you need use OCC
to clarify some technical discussion.

For detail proofs of above two propositions, we refer to [CLS11, Section 3.3]. We call those
morphisms ϕ a toric morphism.

Example 6.3. (1) For ℓ ∈ N and ϕℓ : N → N , ϕℓ(n) = ℓn. It induces a ramified ℓ-cover of XΣ

to itself, which is possible ramified along the toric boundary XΣ \ T.
(2) Consider the following compatible map from the Hirzebruch fan to P1 fan (the linear map
ϕ is just a projection to the first factor). We claim that this is actually the bundle projection
of Hirzebruch surface Hr → P1. (Recall that Hr is defined as the total space of the P1 bundle
P(O ⊕O(−r))→ P1 over P1.

z2

z1

O

z1

O

(3) (Exercise 6.1) Sublattice and finite group quotient ([CLS11, Proposition 3.3.7]): For a lattice
N and fan Σ in NR. We consider i = ϕ : N ′ ↪→ N as an inclusion of a finite index sublattice, then
Σ can be also considered as a fan in N ′

R. Then i induces a toric morphism ϕ : XΣ,N ′ → XΣ,N .
Let G = N/N ′, show that ϕ exhibits XΣ,N as XΣ,N ′/G.

In the later discussions, we need to pay attention to toric varieties without torus factor. We
characterize it here. We refer to [CLS11, Proposition 3.3.9] for a full proof.

Theorem 6.4. (Exercise 6.2) TFAE:

(1) XΣ has a torus factor, i,e, there exists an fan Σ′ such that XΣ ≃ XΣ′ × T.
(2) There is a non-constant toric morphism XΣ → C×.
(3) For all 1-dimensional cones ρ (i.e. rays), their ray generators uρ does not span NR

(Recall that we define uρ at the begining of page 5).

Next, we will give an important example that has no torus factor, and non-compact(non-
complete) toric variety: Blow up at a point.

Example 6.5. We take N = Z2 and fan Σ spanned by faces of the cone R2
≥0. Then we know

that XΣ = C2.
We consider another fan Σ′ described in Example 4.4-(1).
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Then we have that Uσ1 = Spec(C[x, x−1y]) and Uσ2 = Spec(C[xy−1, y]), and they glued along
Uτ = Spec(C[xy, (x−1y)±1]) (τ = σ1 ∩ σ2). Then we change of coordinates x = u, v = y, s =
xy−1, t = x−1y, we have that

Uσ1 = Spec(C[u, v, t]/⟨tu = v⟩), Uσ2 = Spec(C[u, v, s]/⟨u = sv⟩)

and they are glued along st = 1.
Now, we recall that

Bl(0,0)C2 = {([x0, x1], u, v) ∈ P1 × C2 : x0v = x1u}.

We cover it by the affine cover

U1 = {x0 ̸= 0} ∩ Bl(0,0)C2 = {u = x1/x0v}, U2 = {x1 ̸= 0} ∩ Bl(0,0)C2 = {v = x0/x1u}.

Then we change of coordinates t = x1/x0 and s = x0/x1 to see that they glued along st = 1.
Then it is clear that we have XΣ′ = Bl(0,0)C2.
On the other hand, the identity map idN is compatible with fans Σ′ and Σ, which induces an

toric morphism. By certain computation, we claim that idN induces exactly the blow up map

XΣ′ → XΣ, ([x0, x1], u, v) 7→ (u, v).

z1

z2

O

σ1

σ2

Notice that for σ = R2
≥0, we have pσ = (0, 0) (Recall the definition of pσ in Section 5). Then

we generalize the example in the follow way:
For any fan Σ and a smooth cone σ = Cone(u1, · · · , un) in Σ (recall the definition of smooth

cone in Theorem 3.10), we set u0 = u1 + · · ·+ un. Then we can define another fan

Σ∗(σ) = Σ \ {σ} ∪ {Cone({u0, u1, · · · , un} \ {ui}), i = 1, 2, · · · , n}.

Proposition 6.6. (Exercise 6.3) The identity map idN induces the blow up at pσ:

XΣ∗(σ) = Blpσ(XΣ)→ XΣ.

Hint: Actually, the operation is essential local. So, still only need to verify this property for
the X[0,∞)n = Cn case.

Here, we still require that σ is a smooth cone to blow up. In general, we can study further
refinement (for example a more delicate version of subdivision is presented in [CLS11, Section
11.1]) to resolve singularities.

Definition 6.7. For a proper morphism of two varieties ϕ : X ′ → X, we say it is a resolution

of singularities if X ′ is smooth and irreducible, and ϕ induces an isomorphism ϕ : ϕ−1(Xreg)
≃−→

Xreg, where Xreg is the regular locus.

For a toric morphism, we say it is a toric resolution (of singularities) if it is a resolution of
singularities. It is not surprise that we can use certain combinatorial operation on fans to cook
up resolutions.

Definition 6.8. We say a fan Σ′ is a refinement of Σ if Σ′(1) ⊂ Σ(1) and each cone of Σ′ is
contained in some cone of Σ.
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It is clear that a refinement (together with idN ) induces a toric morphism ϕ : XΣ′ → XΣ.
We have the following result about existence.

(Exercise 6.4) Recall the conifold singularity in Example 3.11-(3). Try to construct Atiyah
flop via toric resolutions. Hint: Example 7.6.4 of [CLS11]

Proposition 6.9 ([CLS11, Theorem 11.1.9]). Every fan Σ has a refinement Σ′ such that Σ′ is
smooth and ϕ : XΣ′ → XΣ is a toric resolution with projective fiber.



LECTURES ON TORIC VARIETY 16

7. Weil divisors on toric variety

We recall basic notion of divisors here.(Remember that we always assume normality.)
For D ⊂ X a closed irreducible subvariety of codimension 1, we say it is a prime (Weil)

divisor.

Definition 7.1. We define

Div(X) =
⊕

D prime

ZD,

the free abelian group generated by prime divisors. Elements there in are called Weil divisors.
We take D =

∑
aiDi ∈ Div(X). We say D ≥ 0 if ai ≥ 0 for all di.

We set k(X) the field of rational functions on X. For any prime divisor and f ∈ k(X)×,
we can define an integer called the vanishing order of f along D, which actually form a ring
homomorphism ordD : k(X)× → Z. Then for f ∈ k(X)×, we can define

div(f) =
∑
D

: ordD(f)D.

This is in fact a finite sum since a non-zero ration function only has zero/pole along finitely
many prime divisors. Then the set of principal divisors

PDiv(X) = {div(f) : f ∈ k(X)×}
form a subgroup of Div(X).

Definition 7.2. We consider the divisor class group (or (n− 1)-order Chow group) as

Cl(X) = An−1(X) = Div(X)/PDiv(X).

For any Weil divisor D, we can define a sheaf of OX -module OX(D) in the following way.
We set k(X) the field of rational functions on X. Then we set

OX(D)(U) := {0} ∪ {f ∈ k(X)× : (div(f) +D)|U ≥ 0}.
It is clear that OX(D) is a OX -modules sheaf: It is a OX -modules (pre-sheaf) since regular
function has no poles. Next, if f satisfy a condition on poles and zeros locally, then f must
satisfy the condition globally.

Now we go to toric varieties. We consider a particular class of prime divisors. By the OCC
Theorem 5.3, we have that for any rays ρ ∈ Σ(1), we have a n− 1-dimension orbit O(ρ). Then
it defines a prime divisor:

(7.1) Dρ := O(ρ) =
⋃
ρ≺σ

O(σ),

which is indeed a prime divisor by Theorem 5.3. They comes from T-orbits, so they are T-
invariant divisors. Then we set

DivT(XΣ) :=
⊕

ρ∈Σ(1)

ZDρ ≃ ZΣ(1).

We know that Laurent polynomials define rational functions on XΣ, then we can compute
their principal divisors.

Lemma 7.3. For m ∈M , we have ordDρ(χm) = ⟨m,uρ⟩ where uρ is the ray generator of ρ.

Proof. uρ is the ray generator of ρ, then we can extend it to a Z-basis of N . Therefore,
we may assume uρ = e1 and ρ = R≥0e1. In the affine tori Uρ, we first know that Uρ =

Spec(C[x1, x±1
2 , · · · , x±1

n ]). Then Dρ|Uρ = {x1 = 0}.
Now, by the formula of χm(x) = xm1

1 xm2
2 · · ·x

mn

n , where m = (m1, · · · ,mn). Then it is clear
that the vanishing order of χm(x) alone {x1 = 0} is m1 = ⟨m,uρ⟩. □

Corollary 7.4. For m ∈M , we have div(χm) =
∑

ρ⟨m,uρ⟩Dρ.



LECTURES ON TORIC VARIETY 17

We have the following theorem for computing An−1(XΣ).

Theorem 7.5 ([CLS11, Theorem 4.1.3]). We have the short exact sequence

M → DivT(XΣ)→ An−1(XΣ)→ 0.

The first map is m 7→ div(χm), and the second map is DivT(XΣ) ⊂ Div(XΣ) ↠ An−1(XΣ).
(Exercise 7.1): Moreover XΣ has no torus factor if and only if M → DivT(XΣ) is actually

injective. (So the above short exact sequence can have the term 0→M from the left).

The main point of this theorem is that: for any Weil divisor, it is rational equivalent (i.e. the
relation mod principal divisors) to a T-invariant divisor; and such a T-invariant representation
of divisor classes is unique upto T-invariant principal divisors.

Proof. Hard part: DivT(XΣ) → An−1(XΣ) is surjective. It means that for any divisor class,
there exists a T-invariant representative in the class. It involves general discussion on divisors,
we omit this part.

It is clear that the composition M → DivT(XΣ) → An−1(XΣ) is 0. We only need to show
that if [D] = 0 for D ∈ DivT(XΣ), we have D = div(χm) for some m ∈M .

Because [D] = 0, it means that there exists a random rational function f (not necessarily
T-invariant) such that D = div(f). Remember that XΣ and T are birational equivalent, then
f ∈ C(M) = Frac(C[M ]). On the other hand, div(f) = D =

∑
ρ aρDρ is T-invariant, then we

have div(f |T) = div(f)|T = D =
∑

ρ aρDρ|T = 0 (since Dρ ∩ T = ∅ by OCC). Therefore, it

means that f |T is actually a regular function on T. We can apply the same discussion to −D,
which proves that f−1|T is also a regular function on T. Therefore, we have f |T is a non-zero
regular function on T. In other word, we have that f ∈ C[M ] \ {0}.

It means that f = cχm for c ̸= 0, and then we have D = div(cχm) = div(χm). □

Corollary 7.6. For toric varieties, An−1(XΣ) is finitely generated.

Example 7.7. (1) For Pn, we have that Σ(1) = {ei : i = 0, ..., n} where e0 = −e1 − · · · − en,
and ei standard vectors for i ≥ 1. Then for each i, Di = Dρi = {xi = 0} for the homogeneous
coordinate [x0, · · · , xn].

Then the map M → DivT(XΣ) is given by

m 7→ (−m1 − · · · −mn,m1, · · ·mn),

which is rank n. Moreover, Pn has no torus factor. Then we have that

An−1(Pn) = coker(Zn → Zn+1) ≃ Z.

Here, we see that all Di are equivalent to the divisor H given by an arbitrary hyperplane.
(2) For the Hirzebruch surface Hr (recall Exercise 4.2): we have

Σ(1) = {(−1, r), (0, 1), (1, 0), (0,−1).}

The linear map M → DivT(XΣ) is in fact given by the matrix
−1 r
0 1
1 0
0 −1

 .
Then we know that A1(Hr) = Z2 .

In fact, it is a general observation that when we identify M = Zn, then the map M →
DivT(XΣ) is given by the matrix [

utρ1 · · · utρr
]t
.

It enables you to compute An−1(XΣ) using smith normal form.
Lastly, we want to study the global section of the sheaf OXΣ

(D) for D ∈ DivT(XΣ).
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Proposition 7.8. For D ∈ DivT(XΣ), we have

Γ(XΣ,OXΣ
(D)) =

⊕
div(χm)+D≥0

Cχm ⊂ C[M ].

Proof. Recall in Proposition 2.3, we see that k(XΣ) = C(M). As the proposition predicted, we
first prove that Γ(XΣ,OXΣ

(D)) ⊂ C[M ] ⊂ C(M), this means that we need to show that, for
f ∈ Γ(XΣ,OXΣ

(D)), f |T is actually a regular function on T. The argument is basically the
same as Theorem 7.5. We repeat it here.

To see this, by definition of OXΣ
(D), we have (div(f) +D)|T ≥ 0 since T is an open set of

XΣ. On the other hand, by OCC, we see that T = U{0} and for all ray ρ, Dρ ∩ U{0} = ∅. So,
the condition (div(f) +D)|T ≥ 0 exactly means that div(f)|T = div(f |T) ≥ 0. This means that
f |T has no poles on T, i.e. f ∈ C[M ]. Afterward, we pick m ∈M such that f = χm.

Since T acts on XΣ and D is a T-invariant divisor, we have Γ(XΣ,OXΣ
(D)) is a T-invariant

subspace of C[M ]. Then we use Proposition 1.4 to see that Γ(XΣ,OXΣ
(D)) is a direct sum of

Cχm for χm ∈ Γ(XΣ,OXΣ
(D)). Then by definition, this means that div(χm) +D ≥ 0. □

Graphical representation: For D =
∑

ρ aρDρ ∈ DivT(XΣ), we have

div(χm) +D ≥ 0 ⇐⇒ ⟨m,uρ⟩ ≥ −aρ,∀ρ ∈ Σ(1).

Then we set
PD = {m ∈MR : ⟨m,uρ⟩ ≥ −aρ,∀ρ ∈ Σ(1)}.

Tautologically, we have

Γ(XΣ,OXΣ
(D)) =

⊕
m∈PD∩M

Cχm.

For this PD, we notice the following operation

PkD = kPD, PD+div(χm) = PD −m, PD+E ⊂ PD + PE .

Example 7.9. (1) We first consider the blow-up example. The fan is given here. Now, we pick
the divisor D = D0 +D1 +D2 for 3 rays, where u0 = e1 + e2, u1 = e1, u2 = e2. Then we have

PD = {(m1,m2) : m1 +m2 ≥ −1, m1 ≥ −1, m2 ≥ −1}.
By the picture, we know that Γ(Bl0(C2),OBl0(C2)(D)) is infinite dimensional.

z1

z2

O

σ1

σ2 z1

z2

LHS=The fan; RHS=PD.

(2) For the Hirzebruch surface Hr (recall Exercise 4.2): we have 4 ray generators

{(−1, r), (0, 1), (1, 0), (0,−1)} = {u1, u2, u3, u4}.
We take Da = aD1 +D2 for a ∈ Z. Then we have

PDa = {(m1,m2) : rm2 −m1 ≥ −a,m2 ≥ −1,m1 ≥ 0,m2 ≤ 0}.
We look at an r = 2 example. Then on picture, we have. Here PDa is the area inside the cyan
area and above the slanted lines with given a.

Therefore, we have

dimΓ(H2,OH2(D1)) = 2, dimΓ(H2,OH2(D2)) = 4, ,dimΓ(H2,OH2(D3)) = 6.

Proposition 7.10 (Exercise 7.2). For a compact toric variety XΣ (i.e. |Σ| = NR), we have
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z1

z2 a = 1 a = 2 a = 3

RHS=PDa for a = 1, 2, 3.

(1) Γ(XΣ,OXΣ
) = C.

(2) For all D ∈ DivT(XΣ), PD is a polytope (i.e. a bounded polyhedron).
(3) Γ(XΣ,OXΣ

(D)) is finite dimensional for all Weil divisors D (not just for invairant divisors).

(Notice: (1), (3) can follow from general (but hardcore) theorems in algebraic/complex geom-
etry. But here, the point is we can give an elementary proof for toric varieties without anything
difficult.)
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8. Line bundles and Cartier divisors on toric variety

Again, let us start from review.
Let Pic(X) the group of line bundles on X, then we have Pic(X) ↪→ An−1(X) (in fact, it

need normality). The morphism is surjective if ∀x ∈ X, local rings OX,x are UFD (for example
when X is smooth). For a Weil divisor D, we say it is Cartier if its divisor class [D] ∈ An−1(X)
is represented by a line bundle. It just means that for an open cover Ui of X, D|Ui is a principal
divisor. This is true since line bundles have transition functions and D|Ui is the principal
divisor associated with the transition function. We denote the subgroup of Cartier divisors as
CDiv(XΣ). Clear, principal divisors are Cartier, and they defines the trivial line bundles. Then
we have Pic(X) ≃ CDiv(X)/PDiv(X). Tautologically, we have, for a Cartier divisor D, the
sheaf OX(D) is an rank 1 locally free sheaf, which represent the section sheaf of the line bundle
corresponds to [D].

In the toric case XΣ, we denote the subgroup CDivT(XΣ) of Div(XΣ) consists of T-invariant
Cartier divisors. Then by definition, we automatically have the theorem, which follows from
Theorem 7.5,

Theorem 8.1. We have the short exact sequence

M → CDivT(XΣ)→ Pic(XΣ)→ 0.

When XΣ has no torus factor, we have that M → CDivT(XΣ) is injective.

Now, we gonna describe CDivT(XΣ) in a more precise using our fan Σ.
We state the affine result without proof and refer to [CLS11, Proposition 4.2.2].

Proposition 8.2. For a strongly convex rational cone σ ⊂ NR, we have the map M →
CDivT(Xσ) is surjective. I.e. all T-invariant Cartier divisors on affine toric varieties are
principal.

Consequently by Theorem 8.1, there is no non-trivial line bundle on affine toric variety.

Example 8.3. Consider the conifold singularity Xσ in Example 3.11-(3). The result implies
that Pic(Xσ) = 0. But you can compute by Theorem 7.5 that we have A2(Xσ) = Z. In fact, for
Di corresponding 4 ray generators of Xσ, they are not Cartier, and

∑
i aiDi is Cartier if and

only if
∑

i ai = 0.

We the help of affine result, we describe CDivT(Xσ) for general toric varieties. Here, we set
Σmax ⊂ Σ the set of maximal cones: cones that is not a proper subset of any other cones.

Theorem 8.4. For a toric variety XΣ and D ∈ DivT(Xσ), then TFAE:

(1) D is Cartier,
(2) D is principal on toric affines Uσ for all σ ∈ Σ.
(3) For each σ ∈ Σ, there exists mσ ∈ M such that for all ρ ∈ Σ(1) and ρ ⊂ σ we have
⟨mσ, uρ⟩ = −aρ.
(4) For each σ ∈ Σmax, there exists mσ ∈M such that for all ρ ∈ Σ(1) we have ⟨mσ, uρ⟩ = −aρ.
With mσ given for the Cartier divisor D, we have: a) mσ is unique modulo M(σ) := σ⊥ ∩M ;
b) τ is a face of σ, then mσ ≡ mτ mod M(τ).

Proof. (1) ⇐⇒ (2) from the affine result Theorem 8.1. (2) ⇒ (3): Since D|Uσ principal, we
have D|Uσ = χ−mσ for some mσ

7. Then since χ−mσ = D|Uσ =
∑

ρ aρDρ for ρ ∈ Σ(1) and ρ ⊂ σ,
we have ordDρ(χ−mσ) = ⟨−mσ, uρ⟩ = aρ by Lemma 7.3. (3) ⇒ (2): By the condition, we have
D =

∑
ρ⟨−mρ, uρ⟩Dρ. Then we haveD|Uσ =

∑
ρ⊂σ⟨−mρ, uρ⟩Dρ =

∑
ρ⊂σ⟨−mσ, uρ⟩Dρ = χ−mσ .

(3) ⇒ (4) trivial. (4) ⇒ (3) is true since if mσ works for σ, then mσ should works for all its
faces.

The uniqueness of mσ modulo M(σ) follows directly from its definition. The compatibility
(b) comes from the uniqueness since mσ can be choicen as mτ when τ is a face of σ. □

7A minus here for some conventional reason.
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Therefore, for a Cartier divisor D, we have (Uσ, χ−mσ) form a gluing data that gives us a line
bundle on XΣ. The compatibility condition shows that, if we think Σ as a direct poset w.r.t
‘being face’ relation, we have a natural isomorphism

CDivT(Xσ) = lim←−
Σ

M/M(σ).

Next, we consider the differential sheaf and canonical divisor. To simplify discussion, we only
consider XΣ smooth case. Then we have the Euler sequence:

Theorem 8.5 ([CLS11, Theorem 8.1.6]). For a smooth toric variety XΣ without torus factor,
we have an short exact sequence of OXΣ

-module sheaves

0→ Ω1
XΣ
→ ⊕ρ∈Σ(1)OXΣ

(−Dρ)→ An−1(XΣ)⊗OXΣ
→ 0.

We skip the proof since I am not sure if you know enough algebraic geometry to describe
Ω1
XΣ

.

Example 8.6. For Pn, we have the usual Euler sequence

0→ Ω1
Pn → OPn(−1)⊕n+1 → OPn → 0.

We use it to compute the canonical divisor. In the smooth case, we have ωXΣ
= ∧nΩ1

XΣ
.

Corollary 8.7 (Exercise 8.1). For a smooth toric variety XΣ without torus factor, we have

ωXΣ
= OXΣ

(−
∑

ρ∈Σ(1)

Dρ).

Or equivalently, we have

[KXΣ
] = [−

∑
ρ∈Σ(1)

Dρ].

In particular, it implies that toric varieties equip with the toric boundary (XΣ,
∑

ρ∈Σ(1)Dρ) is

log Calabi-Yau (simply say, it means that (Y,D) is a log pair for a Y smooth and D is a divisor
on it such that [KY +D] = 0.)

Remark 8.8. The corollary is also true if XΣ has torus factor and singular as stated in [CLS11,
Theorem 8.2.3]. But one should be careful on the definition of canonical divisor: On normal
variety, singularities show up in codimension 2. So, we can first define the canonical divisor
KU on the smooth locus Xreg = U(⊂ X) as a Cartier divisor (of its canonical line bundle
ωU ). Then we extend by 0 using normality. This gives us a correct notion of canonical divisor
KX = jU∗KU , but it would merely be a Weil divisor!

In this case, the statement of the theorem is that the Weil divisor KXΣ
for a toric variety

(which is always normal) is the Weil divisor −
∑

ρ∈Σ(1)Dρ.

Example 8.9 (Exercise 8.2). We say a smooth variety X is Calabi-Yau (in a very loose sense)
if ωX is trivial. Show that a toric XΣ is Calabi-Yau if and only if there exists m ∈M such that
⟨m,uρ⟩ = 1 for all ρ ∈ Σ(1). Consequently, show that toric Calabi-Yau in this sense must be
non-compact.
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9. Projective toric variety

So far, we only take intrinsic view of toric variety. In this section and the next section, we
develop two extrinsic points of view related with each other. The main concern in this section
is one can find very ample line bundles from lattice polytope.

We start from general construction for (equivariant) rational maps from toric varieties into
projective spaces. For a T-invariant Cartier divisor D =

∑
ρ aρDρ, then by Proposition 7.8,

we have Γ(XΣ,OXΣ
(D)) =

⊕
m∈PD∩M Cχm for a polytope PD. Here, we set PD ∩ M =

{m0, · · · ,mN} (It is probably that N = 0, which means that only constant section there.
But let us assume that N ≥ 1 to avoid the trivial situation.) Then we can define a rational
map, which is equivariant (since χmi are),

(9.1) fD : XΣ 99K P(Γ(XΣ,OXΣ
(D))) = PN .

Definition 9.1. For D as above. We say D is basepoint free if fD is a global defined morphism
(rather than rational). We say D is very ample if fD is a closed embedding. We say D is ample
if kD is very ample for some k ≥ 1.

Remark 9.2. In fact, for all (not necessarily invariant) Cartier divisors, this is a reasonable
definition. However, we will only consider toric case we explained here, which force fD to be
equivariant (which is generally not true).

Let ∆ ⊂MR to be a lattice polytope: it is a convex hull of a finite set S ⊂M , or equivalently,
it is a finite intersection of half-planes that is bounded with integer vertices. We also assume
the linear span of ∆ to be MR, in this case, we say ∆ is full dimensional. In this lecture, we
always assume ∆ is full dimensional!

A subset Q ⊂ ∆ is a called a face if there exists an affine hyperplane Hu,b with normal vector

u such that Q = ∆∩Hu,b and P ⊂ H+
u,b (i.e. the half space of u-side rather then (−u)-side). As a

convention, we also treat ∆ itself as a face of ∆. Since faces are all polytope, not necessarily full
dimension, then we can also discuss the dimension of a face (we allow not just of co-dimensional
1 faces).

For a full dimensional lattice polytope ∆, we have: For facets F , we can find a couple of
vectors uF ∈ N and integers aF such that

∆ = {m ∈MR : ⟨m,uF ⟩ ≥ −aF , ∀F}.
This is called facets presentation of ∆, and it is clear that uF are inward-pointing normal

vector of the facet F . Use the facets presentation, we can define a fan in the following way: For
every face Q of ∆, we define the following cone

σQ = Cone(uF : Q ⊂ F ).
Then we have the following technical result:

Proposition 9.3. We set Σ∆ = {σQ : Q is a face of ∆}. Then Σ∆ is a complete fan (called
the normal fan of ∆), precisely:

(1) σQ is a strongly convex, N -rational, polyhedral cone for each Q;
(2) For all Q, each face of σQ is in Σ∆;
(3) For σQ, σQ′ ∈ Σ∆, σQ ∩ σQ′ is a face of both σQ, σQ′.
(4) |Σ∆| = NR.
(5) dimQ+ dimσQ = n.

Definition 9.4. We can define a toric variety X∆ as XΣ∆
. It is a compact (Ex: why?) toric

variety.

A simple observation is for k ≥ 1, Σ∆ = Σk∆+m. So, we have X∆ = Xk∆+m as an abstract
toric variety. However, will see that the choices of k and m affect its projective embedding.

Example 9.5. (1) Consider the (unit) simplex ∆2 in MR, its normal fan is the P2-fan.
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z1

z2

∆2

z1

z2

Σ∆2

∆2 for P2 and its normal fan.

z1

z2

O
z1

z2

∆ for H2 and its normal fan.

(2) Consider the polytope described below, its normal fan is the H2-fan.
(3) For the polytope ∆, the Orbit-Cone correspondence can be formulate as Orbit-faces corre-
spondence. In fact, facesQ, cones σQ, and orbits O(σQ) are 1-1 correspondent, and dimO(σQ) =
dimQ. In particular, vertices of ∆ correspondence to T fixed points.
(4) For a smooth maximal dimension cone σv, which correspondence a vertex v, and a T fixed
point pσv = pv. We can study its blow up Blpv(X∆) in Proposition 6.6. Here, we notice that a
σv is smooth is equivalent to the corner around v form a basis. Near such a vertex, if we remove
the corner, the resulting polytope gives the fan Σ∗(σv). This gives a polytope explanation of
the toric blow up constriction.

So far, we are still working intrinsically. Now, we consider additional information from ∆.
We first notice that the facet normal vectors uF are actually ray generators of the normal fan
Σ∆: Σ∆(1) = {R≥0uF }. Then we can define a Weil divisor using integers aF

D∆ =
∑
F

aFDF .

Proposition 9.6. D∆ is a Cartier divisor of X∆ and [D∆] ̸= 0.

Proof. By Theorem 8.4, we need to specify mσQ for σQ ∈ (Σ∆)max. We can check that
(Σ∆)max = {σv : vertices of ∆}. Then we define mσv = v, this is a reasonable choice since
for any v ∈ F , we have ⟨v, uF ⟩ = −aF by the definition of facet presentation of ∆! By the
construction of Theorem 8.4, it is clear the choices ofmσv = v gives the divisorD∆ =

∑
F aFDF .

The proof for D∆ is not principal will be left as an Exercise 9.1 (Hint: use Proposition 7.8,
Proposition 7.10). □

Now, we consider section computation of D∆. Recall again that for every T-invariant Cartier
divisor D, we can define a polytope PD such that Γ(X∆,OXΣ

(D)) =
⊕

m∈PD∩M Cχm by Propo-
sition 7.8. We make the following observation.

Lemma 9.7. For a lattice polytope ∆ and its associated Cartier divisor D∆, we have PD∆
= ∆.
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Therefore, we have

Γ(X∆,OX∆
(D∆)) =

⊕
m∈∆∩M

Cχm.

Remark 9.8. For a Laurent polynomial f =
∑

m amχm ∈ C[M ], we set N(f) = Conv{m : am ̸=
0}. It is called the Newton polytope of f . Then for a generic polynomial in Γ(X∆,OX∆

(D∆)),
its Newton polytope N(f) = ∆.

Because k∆ is lattice and full dimension, k∆ ∩M has at least 3 points. We set the number
of lattice to be N + 1 (for N ≥ 2). Then the dimension of the vector space of sections is also
N + 1. Follow our discussion from the beginning, we have the following rational map

fDk∆
: X∆ 99K P(Γ(X∆,OX∆

(Dk∆))) = PN , x 7→ [χm0(x), · · · , χmN (x)].

The main theorem here is

Theorem 9.9 ([CLS11, Proposition 6.1.10]). The divisor D∆ is basepoint free, which implies
that fD∆

defined in (9.1) is an algebraic morphism. The divisor D∆ is always ample8: Precisely,
for n ≥ 2, the divisor kD∆ is very ample for all k ≥ n− 1.

Therefore, we have that fkD∆
is a projective embedding for all k ≥ n−1, and then X∆ = Xk∆

is a projective variety. In this case, we have f∗Dk∆
OPN (1) = OXk∆

(kD∆).

Idea of the proof. We only explain the ampleness condition here. We can reduce to affine cover
(but not in a naive way). Then it is proven in loc. cit. the very ampleness of kD∆ can be
reduced to an equivalent combinatorial conditions about kD∆. Then it is proven in [CLS11,
Proposition 2.2.19] that the combinatorial conditions is true for kD∆ for all k ≥ n− 1. □

Now, we give examples to illustrate.

Example 9.10. We only consider the P2 case. We write x = [x0, x1, x2] and D0 = {x0 =
0}, D1 = {x1 = 0}, D2 = {x2 = 0}. We will consider three polytopes. One the unit simplex ∆2

and one the convex hull spanned by (−1,−1), (−1, 3), (3,−1), say ∆1, and 2∆2.
For ∆2, its facet presentation gives only one non-zero aF for the slanted line −m1−m2 ≥ −1.

So, D∆2 = D0. And Γ(P2, D∆2) = C⊕Cx⊕Cy, where x = x1/x0 and y = x2/x0. We naturally
identify them with Γ(P2, D∆2) = Cx0 ⊕ Cx1 ⊕ Cx2 using homogeneous coordinates. Then it is
clear that fD∆2

is the identity map.
For ∆1, its facet presentation is m1 ≥ −1, m2 ≥ −1 and −m1 −m2 ≥ −2. Then we have

that D∆1 = D0 + D1 + D2 = −KP2 is the anti-canonical divisor. Then we can find that
Γ(P2, D∆2) can be identified with Γ(P2,OP2(3)) that gives you the spaces of homogeneous cubic
polynomials, which is of dimension 10. Then

fD∆1
: P2 → P9, [x0, x1, x2] 7→ [xa0x

b
1x

c
2]a+b+c=3.

This map is known as the degree 3 Veronese map in 3-variable. It is also true that f∗D∆
OP9(1) =

OP2(3).
For 2∆2, the computation is similar since we can see that D2∆2 = 2D0, and the embedding

is given by quadratic analogy of fD∆1
, i.e. the degree 2 Veronese map in 3-variable. Precisely,

we have

fD∆1
([x0, x1, x2]) = [x0x0, x1x1, x2x2, x0x1, x0x2, x1x2] = [Y0, Y1, Y2, Y3, Y4, Y5].

Then, we can described its image by the defining equations:

Y0Y1 = Y3Y3, Y0Y5 = Y4Y3, Y0Y2 = Y4Y4, Y3Y5 = Y4Y1, Y3Y2 = Y4Y5, Y1Y2 = Y5Y5.

Clearly, these are different projective embeddings.

Exercise 9.1: Consider polytope in Example 9.5-(2) for H2. Write down an projective em-
bedding f : H2 → P5, try to find the defining equations.

8The n = 1 case is trivial: the only possible 1-dimensional lattice polytope gives P1.
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Remark 9.11. Under analytic topology and assume X∆ is smooth, a T-equivariant projective
embedding gives a symplectic form on X∆ (pull-back of Fubini-Study) that is equivariant under
(S1)n ⊂ T-action. In particular, this action is effective and Hamiltonian. The polytope ∆
shows up as the moment map image. Translation and dilation of the moment image (or ∆)
corresponds to choices for defining the moment map and rescale the symplectic form.

In general, a 2n-dimensional symplectic toric manifold is a 2n-dimensional connected sym-
plectic manifold plus an effective and Hamiltonian (S1)n (plus a moment map of the action). So,
we have explained here that X∆ (plus a choice of the moment map) gives a compact symplectic
toric manifold.

A more precise relation is the following: We say a polytope ∆ is Delzant if there exists a
couple of affine transformations such that the resulting polytope is lattice and its normal fan is
smooth. We have the following bijection

{Compact symplectic toric manifold}/Symp↔ {Delzant polytope ∆}/, (X,ω, (S1)n ↷ X,µ) 7→ µ(X).

Well-definedness of the map is the content of Atiyah-Guillemin-Sternberg convexity theorem.
Here, we have given a (part of) proof of surjectivity (we didn’t specify the moment map and
we didn’t explain the moment map image is the given ∆, but you can supplement by yourself.)
Another proof of surjectivity can be given using the quotient construction we will explain in
Section 10.

To prove injectivity, we first observe that different choice of moment map gives translation
and rescaling of ∆. So we can only consider the case that ∆ is lattice. The uniqueness of
normal fan gives the uniqueness of abstract variety, and if we fix k that makes k∆ very ample,
a symplectic form is also fixed. This basically proves the uniqueness (Probably something was
missing here, but not too far.)
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10. Quotient construction and Global homogeneous coordinate

In this section, we describe the quotient construction of toric variety. For a fan Σ in NR,
we assume XΣ has no torus factor (c.f. Theorem 6.4); this is not so necessary, but make
certain conveniences. We refer to [CLS11, Chapter 5] as the reference that general cases are
also discussed.

Convention: Recall first that Σ(1) is the set of rays, uρ is the ray generator of ρ ∈ Σ(1), Dρ

is the prime divisor associated with ρ. We set |Σ(1)| = r ≥ n (the inequality follows from that
XΣ has no torus factor.

We first state our theorem before inducing new notations.

Theorem 10.1. For a fan Σ in NR, we assume XΣ has no torus factor, there exists a closed
subvariety Z(Σ) ⊂ Cr and a group G ⊂ Tr and a toric morphism Cr \ Z(Σ) → XΣ, such that
G acts on Cr \Z(Σ), the toric morphism induces a T-equivariant morphism of algebraic stacks

[(Cr \ Z(Σ))//G]→ XΣ

that exhibits XΣ as an almost geometric quotient. When XΣ is orbifold, this is a geometric
quotient (which particularly implies that both stack and variety have 1-1 correspondence closed
points).

When XΣ is smooth, the G action on Cr \ Z(Σ) is free. Then we have that 9

[(Cr \ Z(Σ))//G] ≃ XΣ.

We are not going to explain the precise meaning of different quotients here. We only consider
the smooth case to simplify our discussion.

Construction: Because XΣ, Theorem 7.5 shows that we have an exact sequence

0→M →
∑
ρ

ZDρ = Zr → An−1(Xσ)→ 0.

Applying HomZ(−,C×), we have an exact sequence

1→ HomZ(An−1(Xσ),C×)→ HomZ(Zr,C×)→ HomZ(M,C×)→ 1.

So HomZ(M,C×) ≃ HomZ(M,Z)⊗ C× = NC× = TN , and HomZ(Zr,C×) = (C×)r.
We define G = HomZ(An−1(Xσ),C×) ⊂ (C×)r a subgroup. Since An−1(Xσ) is a finitely

generated abelian group, we have G is a product of torus and finite abelian group. We have the
following direct computation.

Lemma 10.2. If we pick a basis ei of M , then we have

G = {(tρ)ρ ∈ (C×)r :
∏
ρ

t
⟨ei,uρ⟩
ρ = 1, ∀i}.

The formula is surely true if we replace ei by all m ∈M .

Remark 10.3. With the given basis ei, you can write M → Zr as a r× n Z-valued matrix. The
i-th column of this matrix gives you exponential of the i-th equation in the definition of G.

Next, we consider the ring C[xρ : ρ ∈ Σ(1)]. For any cone σ ∈ Σ, we define a monomial

xσ̂ =
∏
ρ ̸⊂σ

xρ.

Then we define the irrelevant ideal (also called Stanley–Reisner ideal)

B(Σ) (or SR(Σ)) = ⟨xσ̂ : σ ∈ Σ⟩.
Small observation is that if τ ≺ σ, then xσ̂|xτ̂ . So, we only need to generate the ideal by
σ ∈ Σmax. Then we define the closed subvariety

Z(Σ) = Spec (C[xρ]/B(Σ)) ⊂ Cr.

9The point for the statement is that the quotient stack is represented by a scheme [Sta, Lemma 80.11.7] under
freeness condition, and the scheme is isomorphic to the toric variety XΣ using the given morphism.
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Geometrically, it is a union of coordinate subspaces.

We set ‹N = Zr. For each σ ∈ Σ, we can define a cone σ̃ = Cone(eρ : ρ ⊂ σ) in ‹NR, and

Σ̃ = {τ : ∀τ ≺ σ̃,∀σ ∈ Σ} a fan in ‹NR

Lemma 10.4. We the notation above, Cr \ Z(Σ) is a toric variety with fan Σ̃. The toric
morphism Cr \ Z(Σ)→ XΣ is given by the Z-linear map‹N = Zr → N, eρ 7→ uρ.

Remark 10.5. Computational remarks. In fact, recall that we know there is a Z-linear map
M → Zr, then the above is the dual/transport of the matrix.

Now, we present all constructions show up in the theorem. Let’s give some example to
illustrate the theorem.

Example 10.6. (1) In Example 3.11-(2), we explain the construction of A1-singularity by
hand. Here, we present it (and its small generalization) using the quotient construction: We
consider the cone σ = Cone((0, 1), (d,−1)). Its fan is Σ = σ,R≥0(0, 1),R≥0(d,−1), {0}.

These two vectors also give the ray generators (so r = 2), and σ is the only one maximal
cone.

Then we have B(Σ) = {1} is the zero ideal. So, Z(Σ) = ∅. For the group G, it is given by
equations t−1

1 t2 = 1 and td1 = 1. So, we have that G = {(ζ, ζ) : ζ5 = 1} ≃ Z/d. Therefore, the
quotient construction gives the geometric quotient

[C2//(Z/d)]→ C2/(Z/d).

(2) In Example 4.8-(4), we explain the construction of weight projective space as a toric variety.
Here, we use the quotient construction to see it is indeed the weight projective space.

Recall the construction, let (q0, q1, · · · , qn) ∈ Nn+1 with gcd(q0, q1, · · · , qn) = 1. Consider
N = Zn+1/Z(q0, q1, · · · , qn). We set ui the natural projection of ei ∈ Zn+1 onto N , and

Σ = {Proper subsets of {u0, u1, · · · , un}}.

Here, it is easy to see that r = n+1. The irrelevant ideal is given by B(Σ) = ⟨x0, x1, · · · , xn⟩.
So Z(Σ) = {0}. With the lemma, Zn+1 should be understood as the fan of the toric variety
Cr \ Z(Σ) = Cn+1 \ {0}. It remains to compute G, which is given by the equations

t−q0
0 t1 = · · · = t−qn

0 tn = 1.

I.e. G = {(tq0 , · · · , tqn) : t ∈ C×} ≃ C×. It is clear that

[Cn+1 \ {0}//G]→ Pn(q0, q1, · · · , qn)

is the weight projective space as both stack and variety.
When (q0, q1, · · · , qn) = (1, 1, · · · , 1), the action is free and the quotient stack is presented by

the projective space.
(3) Exercise 10.1 Write down the quotient constructions of Bl0(Cn) and the conifold singularity
Example 3.11-(3).

Lastly, we discuss the global homogeneous coordinate and the homogenization process. The
role of it is similar to the role of usual homogeneous coordinate to projective space.

In the construction before, we define the ring S = C[xρ : ρ ∈ Σ(1)]. We call it the total coor-
dinate ring, or the Cox ring of XΣ. S is naturally An−1(XΣ)-graded: for monomial xα =

∏
ρ x

α
ρ ,

we define deg(xα) = [
∑
αρDρ] ∈ An−1(XΣ); we set Sα the subspace of degree α homogeneous

polynomials.
We will use it for the following two reasons:

• Homogenization: For a Weil divisor, we first recall that, we define a polyhedron PD for
every T-invariant Weil divisor D ∈ DivT(XΣ):

PD = {m ∈MR : ⟨m,uρ⟩ ≥ −aρ,∀ρ ∈ Σ(1)}.



LECTURES ON TORIC VARIETY 28

We can then define the D-Homogenization of Laurent polynomial χm =
∏

i t
mi
i as

x⟨m,D⟩ =
∏
ρ

x
⟨m,uρ⟩+aρ
ρ ∈ S[D].

In fact, it is direct to verify that the map defines an C-linear isomorphism

χm 7→ x⟨m,D⟩, Γ(XΣ,OXΣ
(D))

≃−→ S[D].

An advantage to use homogenization here is that: Laurent polynomial gives formula of sections
of OXΣ

(D) restrict to T ⊂ XΣ, but it is implicit “compactified” toXΣ, while the homogenization
gives formula of sections on whole OXΣ

(D) using the global homogeneous coordinate that is
global defined.
• The toric Ideal-Variety correspondence ([CLS11, Proposition 5.2.7]): Let XΣ be a
orbifold toric variety. Then we have a bijection

{Closed subvarieties of XΣ} ↔ {Radical homogeneous ideals I ⊂ B(Σ) ⊂ S}.

Remark 10.7. As we explained in Remark 9.11, the symplectic toric manifold has deep relations
with toric variety. The quotient construction, related to the GIT quotient theory (but we didn’t
explain in what sense), will correspond to the symplectic reduction (in fact, Kahler reduction)
construction of symplectic toric manifold. The complement of the irrelevant ideal is homotopy
equivalent to a subset of it, which is given by a level set of the moment map of a Hamiltonian
action on the complement of the irrelevant ideal. The quotient of both construction are the
same follows from the Kempf-Ness theorem.

Example 10.8. For Pn, its quotient construction is given by the quotient Cn+1\{0}/C×. Here,
we consider the circle action that restricts from the C× action, which is Hamiltonian with a
moment map given by

µ(x0, x1, · · · , xn) = x20 + x21 + · · ·+ x2n.

Then µ−1(1) = S2n+1 and the inclusion µ−1(1) ⊂ Cn+1 \ {0} induces a diffeomorphism Pn =
µ−1(1)/S1 ≃ Cn+1 \ {0}/C×.
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11. Fano toric variety and Calabi-Yau hypersurfaces

This section, we discuss Batyrev’s construction for CY hypersurfaces in Fano toric varieties.
We refer to [Bat93], but mostly follows notation in this notes. All lattice polytopes in this
section are assumed to be full dimensional (= n).

We start from characterization of toric Fano varieties. For a lattice polytope ∆, we say it is
reflexive if its facet presentation has the following form

∆ = {m ∈MR : ⟨m,uF ⟩ ≥ −1, F facets of ∆}.
Equivalently, it means that 0 is the only interior lattice point of ∆.

Definition 11.1. We say a normal variety X is Gorenstein if the anti-canonical divisor −KX

is Cartier, it is Gorenstein Fano if the anti-canonical divisor −KX is Cartier and ample.

Proposition 11.2. For a lattice polytope ∆, we have

X∆ is Gorenstein Fano ⇐⇒ ∆ is reflexive.

Proof. If X∆ is Gorenstein Fano, then by definition of Fano, we have that −KX is Cartier
and ample. We use −KX as an ample divisor to define projective embeddings with associated
polytope P−KX

. But we have that P−KX
= ∆ upto GLn(Z), and then ∆ is reflexive by the

formula of P−KX
with the help of Corollary 8.7.

Conversely, if ∆ is reflexive, then ∆ = P−KX
by Corollary 8.7 and −KX = D∆ is Cartier by

Proposition 9.6 and ample by Theorem 9.9. □

Example 11.3. In dimension 2, there are 16 equivalent classes of reflexive lattice polygons
upto GL2(Z). We see that most of them can be constructed from the P2 polygon by removing
corners. By Example 9.5-(4), this means that most of toric Fano surfaces can be constructed
by successive blow-ups of P2. However, they do not cover all Fano surfaces.

All 16 reflexive 2-dimensional polytopes [Hof18, Figure 1.5] and their dual pair-
ing.

Now, we can study CY hypersurfaces. We first introduce definitions: We say a smooth alge-
braic variety is Calabi-Yau if its its canonical bundle is trivial10. For a resolution of singularities
ϕ : X ′ → X, we say it is crepant if ϕ∗KX = KX′ as divisor classes 11.

10In literature, definitions of Calabi-Yau are not uniform. Here, we consider the loosest requirement (but the
most common), which allows non-compact and/or non simply connected examples.

11To make sense the notation here, we need to assume X is Gorenstein (or Q-Gorenstein) to make sure KX

is Cartier. Then we define the pull-back via pull-back of like bundle.
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Now, for a reflexive lattice polytope ∆, we assume X∆ has a toric crepant resolution ϕ :
XΣ → X∆. Then ϕ∗KX∆

= KXΣ
is basepoint free. We pick a generic section s of OXΣ

(−Kσ)
such that the zero locus V∆ of s is smooth and irreducible; V∆ is of dimension n− 1.

Proposition 11.4. We have that V∆ is Calabi-Yau and hi,0(V∆) = 0 for 0 < i < dimV∆.

Proof. Calabi-Yau property comes from adjunction formula since XΣ is Fano.
We will not use the cohomological vanishing here, we refer to [CLS11, Proposition 11.2.10]

for readers. □

Remark 11.5. In fact, we should think V∆ as a family of CY hypersurfaces since we pick general
hypersurfaces. We still use V∆ as the family of hypersurfaces and this is the family F(∆) in
[Bat93].

Remark 11.6. The essential problem here is that we do not know if crepant resolution exists
in general (generally known for n ≤ 3 and unknown for n ≥ 4). Batyrev do something more
sophisticated (which produces singular Calabi-Yau in general) and it beyond the scope of this
lecture. We just present this over simplified discussion here that sketches the idea of the story.

Finally, we want to roughly discuss the Mirror phenomenon of Batyrev CYs. It based on the
following simple observation: For a reflexive lattice polytope, we define its dual as

∆∨ = Conv(uF : F facets of ∆).

Lemma 11.7. For a full dimensional reflexive lattice polytope ∆, its dual ∆∨ is also a full
dimensional reflexive lattice polytope. Moreover, we have ∆ = (∆∨)∨.

Therefore, for a given full dimensional reflexive lattice polytope ∆, we have a pair of toric
Fano varieties (X∆, X∆∨). If both of them have crepant resolutions, then our receipt produces
a pair of CY hypersurfaces (V∆, V∆∨). They are expected to mirror with each other in certain
sense.

Remark 11.8. We know that uF are ray generators of the normal fan Σ∆. Then ∆∨ is actually
the convex hull of the ray generators of Σ∆. Therefore, in some (particularly physical) literature,
people would say ∆∨ produce X∆. In some sense, if you thought ∆∨ as a fan, then nothing
wrong; but in our convention, it suppose to produce X∆∨ . This would make a lot of confusions!!!

Example 11.9. In this example, we cook up the famous Greene–Plesser quintic 3-CY mirror
pair. (Here, we refer to [CLS11, Example 5.4.10] rather than Batyrev’s paper.)

We start from ∆ considered as a lattice polytope in M = Z4, we denote ∆4 the unit simplex
in R4, then we set ∆ = 5∆4 − (1, 1, 1, 1) ⊂MR. Its vertices are

v0 = (−1,−1,−1,−1), v1 = (4,−1,−1,−1), · · · , v4 = (−1,−1,−1, 4) ∈M.

Clear we have Σ∆ = ΣP4 (we see its ray generators are ui described below), X∆ = P4,
D∆ = −KP4 . Its anti-canonical sections gives generic quintic V∆, which is Calabi-Yau. In fact,
this family has 101-parameters (in fact 126−24−1, try to understant what are those numbers),
and we often just write the Fermat type

x50 + · · ·+ x54 = 0

as a representative (and say it is mirror to the 1-parameter family we present below).

The dual ∆∨ ⊂ NR itself is spanned by

u0 = (−1,−1,−1,−1), u1 = (1, 0, 0, 0), · · · , u4 = (0, 0, 0, 1) ∈ N.

Ray generators of its normal fan Σ∆∨ (in M) are vertices of ∆ ⊂ MR: vi we described as
above.

We consider the sublattice M1 generated by ui in M . We claim that

M/M1 ≃ {(a0, a1, a2, a3, a4) ∈ (Z/5)5 :
∑

ai = 0}/{(a, a, a, a, a) : a ∈ Z/5} ≃ (Z/5)3.
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Because M1 ⊂ M is a sublattice, we have that (M1)R = MR = R4. Then we can think
Σ∆∨ as a fan for both M1 and M . However, with respect to M1, the resulting toric variety is
XΣ∆∨ ,M1 = P4; and with respect to M , the resulting toric variety is X∆∨ . Then it is proven
that in Example 6.3-(3) that

X∆∨ ≃ XΣ∆∨ ,M1/(M/M1) = P4/(Z/5)3.

We can identify (by direct computation) this (Z/5)3 in the quotient with

{(µ0, µ1, µ2, µ3, µ4) :
∏

µi = 1}/{(µ, µ, µ, µ, µ)}

for the fifth root of unit µi, µ, and it acts on P4 diagonally.

Remark 11.10. Using the quotient construction or projective embedding, we can also describe
X∆∨ = P4/(Z/5)3 as the hypersurface Y1Y2Y3Y4Y5 = Y 5

0 in P5 (∋ [Y0, Y1, Y2, Y3, Y4, Y5]). We
left the detail to readers.

In fact, the above procedure for introducing the sublattice M1 actually gives a toric crepant
resolution: it is direct to see that P4 → P4/(Z/5)3 pull-back canonical divisor to canonical
divisor (combinatorially, this is because when considering Σ∆∨ as fans in both M1 and M ,
we only reparameterize the lattices, but no extra ray generators are added). Moreover, the
resolution commute with taking anti-canonical hypersurfaces.

So, the resulting CY hypersurfaces V∆∨ in P4 is exactly the quintic that can descent to
P4/(Z/5)3. To see what quintic can descent to P4/(Z/5)3, we look at the anti-canonical divisor
of P4/(Z/5)3 that corresponds to the polytope ∆∨ and correspondent generic anti-canonical
hypersurfaces in P4/(Z/5)3. They should have Newton polytope ∆∨, and can be given by the
following Laurent polynomial

c0
t1t2t3t4

+ c1t1 + c2t2 + c3t3 + c4t4 + c5 = 0;

We take homogenization respect to −KP4/(Z/5)3 = D∆∨ (defined in Section 10): For n ∈ N = Z4,
the character χn(t) = tn corresponds to a monomial of yi with exponent vector

v0
v1
v2
v3
v4

n+


1
1
1
1
1

 =


−1 −1 −1 −1
4 −1 −1 −1
−1 4 −1 −1
−1 −1 4 −1
−1 −1 −1 4

n+


1
1
1
1
1

 .
We plug n = ui to get the ci term. Then the resulting homogeneous equation in variable yi is

c0y
5
0 + c1y

5
1 + c2y

5
2 + c3y

5
3 + c4y

5
4 + c5y0y1y2y3y4 = 0,

which is clear to see that it descent to P4/(Z/5)3 by the (Z/5)3 action we describe above. Then
we claim that the resolve CY hypersurfaces V∆∨ in the resolved toric Fano P4 (you should think
it as XΣ∆∨ ,M1 = P4 rather then XΣ∆,N = P4) is given by this quintic.

For generality, we could require c0, c1, c2, c3, c4 ̸= 0. Notice that the T = T4 acts on the
resolution P4 → P4/(Z/5)3 transitively, we can change coordinates. Then we assume that
c0 = c1 = c2 = c3 = c4 = 1 (one because the equation is homogeneous, four because of the
T-action). Then the resulting hypersurfaces V∆∨ could be written as (we set c5 = ψ)

{y50 + y51 + y52 + y53 + y54 + ψy0y1y2y3y4 = 0} ⊂ P4 = XΣ∆∨ ,M1 .

This gives the familiar equation in literatures, and the mirror CY3 V∆∨ (or if you somehow
allow singular Calabi-Yau, it is also reasonable to call the hypersuraces in P4/(Z/5)3 as the
mirror). □
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12. Coherent-Constructible correspondence

We refer to [She22], and we follow directly the (very short) article.
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